Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 19 (2023), 078, 27 pages      arXiv:2112.09781
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday

Information Geometry, Jordan Algebras, and a Coadjoint Orbit-Like Construction

Florio M. Ciaglia a, Jürgen Jost bcd and Lorenz J. Schwachhöfer e
a) Department of Mathematics, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
b) Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
c) Center for Scalable Dynamical Systems, Leipzig University, Germany
d) Santa Fe Institute for the Sciences of Complexity, New Mexico, USA
e) Department of Mathematics, TU Dortmund University, Dortmund, Germany

Received April 12, 2023, in final form October 09, 2023; Published online October 20, 2023

Jordan algebras arise naturally in (quantum) information geometry, and we want to understand their role and their structure within that framework. Inspired by Kirillov's discussion of the symplectic structure on coadjoint orbits, we provide a similar construction in the case of real Jordan algebras. Given a real, finite-dimensional, formally real Jordan algebra ${\mathcal J}$, we exploit the generalized distribution determined by the Jordan product on the dual ${\mathcal J}^{\star}$ to induce a pseudo-Riemannian metric tensor on the leaves of the distribution. In particular, these leaves are the orbits of a Lie group, which is the structure group of ${\mathcal J}$, in clear analogy with what happens for coadjoint orbits. However, this time in contrast with the Lie-algebraic case, we prove that not all points in ${\mathcal J}^{*}$ lie on a leaf of the canonical Jordan distribution. When the leaves are contained in the cone of positive linear functionals on ${\mathcal J}$, the pseudo-Riemannian structure becomes Riemannian and, for appropriate choices of ${\mathcal J}$, it coincides with the Fisher-Rao metric on non-normalized probability distributions on a finite sample space, or with the Bures-Helstrom metric for non-normalized, faithful quantum states of a finite-level quantum system, thus showing a direct link between the mathematics of Jordan algebras and both classical and quantum information geometry.

Key words: information geometry; Jordan algebras; Lie algebras; Kirillov orbit method; Fisher-Rao metric; Bures-Helstrom metric.

pdf (606 kb)   tex (46 kb)  


  1. Alfsen E.M., Shultz F.W., State spaces of operator algebras. Basic theory, orientations, and $C^*$-products, Math. Theory Appl., Birkhäuser, Boston, MA, 2001.
  2. Amari S.-I., Differential-geometrical methods in statistics, Lect. Notes Stat., Vol. 28, Springer, Berlin, 1985.
  3. Amari S.-I., Information geometry and its applications, Appl. Math. Sci., Vol. 194, Springer, Tokyo, 2016.
  4. Amari S.-I., Nagaoka H., Methods of information geometry, Transl. Math. Monogr., Vol. 191, American Mathematical Society, Providence, RI, 2000.
  5. Ay N., Jost J., Lê H.V., Schwachhöfer L., Information geometry and sufficient statistics, Probab. Theory Related Fields 162 (2015), 327-364, arXiv:1207.6736.
  6. Ay N., Jost J., Lê H.V., Schwachhöfer L., Information geometry, Ergeb. Math. Grenzgeb. (3), Vol. 64, Springer, Cham, 2017.
  7. Baez J.C., Getting to the bottom of Noether's theorem, in The Philosophy and Physics of Noether's Theorems: a Centenary Volume, Cambridge University Press, Cambridge, 2022, 66-99, arXiv:2006.14741.
  8. Bauer M., Bruveris M., Michor P.W., Uniqueness of the Fisher-Rao metric on the space of smooth densities, Bull. Lond. Math. Soc. 48 (2016), 499-506, arXiv:1411.5577.
  9. Bengtsson I., Zyczkowski K., Geometry of quantum states: an introduction to quantum entanglement, Cambridge University Press, Cambridge, 2006.
  10. Berthier M., Geometry of color perception. Part 2: perceived colors from real quantum states and Hering's rebit, J. Math. Neurosci. 10 (2020), 14, 25 pages, arXiv:hal-02342456.
  11. Berthier M., Prencipe N., Provenzi E., A quantum information-based refoundation of color perception concepts, SIAM J. Imaging Sci. 15 (2022), 1944-1976.
  12. Berthier M., Provenzi E., Quantum measurement and colour perception: theory and applications, Proc. A. 478 (2022), 20210508, 25 pages, arXiv:hal-03268152.
  13. Bertram W., The geometry of Jordan and Lie structures, Lecture Notes in Math., Vol. 1754, Springer, Berlin, 2000.
  14. Bertram W., Neeb K.-H., Projective completions of Jordan pairs, Part II: Manifold structures and symmetric spaces, Geom. Dedicata 112 (2005), 73-113, arXiv:math.GR/0401236.
  15. Bures D., An extension of Kakutani's theorem on infinite product measures to the tensor product of semifinite $w^{\ast}$-algebras, Trans. Amer. Math. Soc. 135 (1969), 199-212.
  16. Čencov N.N., Statistical decision rules and optimal inference, Transl. Math. Monogr., Vol. 53, American Mathematical Society, Providence, RI, 1982.
  17. Chruściński D., Ciaglia F.M., Ibort A., Marmo G., Ventriglia F., Stratified manifold of quantum states, actions of the complex special linear group, Ann. Physics 400 (2019), 221-245, arXiv:1811.07406.
  18. Chu C.-H., Jordan structures in geometry and analysis, Cambridge Tracts in Math., Vol. 190, Cambridge University Press, Cambridge, 2012.
  19. Chu C.-H., Infinite dimensional Jordan algebras and symmetric cones, J. Algebra 491 (2017), 357-371, arXiv:1707.03610.
  20. Ciaglia F.M., Cosmo F.D., Ibort A., Laudato M., Marmo G., Dynamical vector fields on the manifold of quantum states, Open Syst. Inf. Dyn. 24 (2017), 1740003, 38 pages, arXiv:1707.00293.
  21. Ciaglia F.M., Di Cosmo F., Laudato M., Marmo G., Mele F.M., Ventriglia F., Vitale P., A pedagogical intrinsic approach to relative entropies as potential functions of quantum metrics: the $q$-$z$ family, Ann. Physics 395 (2018), 238-274, arXiv:1711.09769.
  22. Ciaglia F.M., Jost J., Schwachhöfer L., Differential geometric aspects of parametric estimation theory for states on finite-dimensional $C^*$-algebras, Entropy 22 (2020), 1332, 30 pages, arXiv:2010.14394.
  23. Ciaglia F.M., Jost J., Schwachhöfer L., From the Jordan product to Riemannian geometries on classical and quantum states, Entropy 22 (2020), 637, 27 pages, arXiv:2005.02023.
  24. Ciaglia F.M., Nocera F.D., Jost J., Schwachhöfer L., Parametric models and information geometry on $W^{*}$-algebras, Inf. Geom. 5 (2023), 1-26, arXiv:2207.09396.
  25. Dittmann J., On the Riemannian geometry of finite-dimensional mixed states, Sem. Sophus Lie 3 (1993), 73-87.
  26. Dittmann J., On the Riemannian metric on the space of density matrices, Rep. Math. Phys. 36 (1995), 309-315.
  27. Facchi P., Ferro L., Marmo G., Pascazio S., Defining quantumness via the Jordan product, J. Phys. A 47 (2014), 035301, 9 pages, arXiv:1309.4635.
  28. Facchi P., Kulkarni R., Man'ko V.I., Marmo G., Sudarshan E.C.G., Ventriglia F., Classical and quantum Fisher information in the geometrical formulation of quantum mechanics, Phys. Lett. A 374 (2010), 4801-4803, arXiv:1009.5219.
  29. Falceto F., Ferro L., Ibort A., Marmo G., Reduction of Lie-Jordan Banach algebras and quantum states, J. Phys. A 46 (2013), 015201, 14 pages, arXiv:1202.3969.
  30. Faraut J., Korányi A., Analysis on symmetric cones, Oxford Math. Monogr., The Clarendon Press, Oxford, 1994.
  31. Fisher R.A., On the mathematical foundations of theoretical statistics, Philos. Trans. Roy. Soc. A 222 (1922), 309-368.
  32. Fuchs C.A., Distinguishability and accessible information in quantum theory, Ph.D. Thesis, Universite de Montreal, 1996, arXiv:quant-ph/9601020.
  33. Fujiwara A., Hommage to Chentsov's theorem, Inf. Geom., to appear.
  34. Hasegawa H., Non-commutative extension of the information geometry, in Quantum Communications and Measurement (Nottingham, 1994), Plenum, New York, 1995, 327-337.
  35. Hasegawa H., Petz D., Non-commutative extension of information geometry II, in Quantum Communication, Computing, and Measurement, Springer, New York, 1997, 109-118.
  36. Helstrom C.W., Minimum mean-squared error of estimates in quantum statistics, Phys. Lett. A 25 (1967), 101-102.
  37. Helstrom C.W., The minimum variance of estimates in quantum signal detection, IEEE Trans. Inform. Theory 14 (1968), 234-242.
  38. Helstrom C.W., Quantum detection and estimation theory, J. Stat. Phys. 1 (1969), 231-252.
  39. Helstrom C.W., Quantum detection and estimation theory, Academic Press, New York, 1976.
  40. Hilgert J., Neeb K.-H., Ørsted B., The geometry of nilpotent coadjoint orbits of convex type in Hermitian Lie algebras, J. Lie Theory 4 (1994), 185-235.
  41. Hilgert J., Neeb K.-H., Ørsted B., Conal Heisenberg algebras and associated Hilbert spaces, J. Reine Angew. Math. 474 (1996), 67-112.
  42. Hilgert J., Neeb K.-H., Ørsted B., Unitary highest weight representations via the orbit method. I. The scalar case, Acta Appl. Math. 44 (1996), 151-184.
  43. Iordănescu R., Jordan structures in geometry and physics, Editura Academiei Rom^ane, Bucharest, 2003, arXiv:1106.4415.
  44. Jenčová A., Affine connections, duality and divergences for a von Neumann algebra, arXiv:math-ph/0311004.
  45. Jenčová A., A construction of a nonparametric quantum information manifold, J. Funct. Anal. 239 (2006), 1-20, arXiv:math-ph/0511065.
  46. Jordan P., von Neumann J., Wigner E.P., On an algebraic generalization of the quantum mechanical formalism, Ann. of Math. 35 (1934), 29-64.
  47. Kakutani S., On equivalence of infinite product measures, Ann. of Math. 49 (1948), 214-224.
  48. Kirillov A.A., Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), 53-104.
  49. Kirillov A.A., Elements of the theory of representations, Grundlehren Math. Wiss., Vol. 220, Springer, Berlin, 1976.
  50. Kirillov A.A., Geometric quantization, in Dynamical Systems, IV, Encyclopaedia Math. Sci., Vol. 4, Springer, Berlin, 2001, 139-176, arXiv:1801.02307.
  51. Kirillov A.A., Lectures on the orbit method, Grad. Stud. Math., Vol. 64, American Mathematical Society, Providence, RI, 2004.
  52. Koecher M., The Minnesota notes on Jordan algebras and their applications, Lecture Notes in Math., Vol. 1710, Springer, Berlin, 1999.
  53. Kostant B., Quantization and unitary representations. I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., Vol. 170, Springer, Berlin, 1970, 87-208.
  54. Kostecki R.P., Quantum theory as inductive inference, J. Math. Phys. 1305 (2011), 33-40, arXiv:1009.2423.
  55. Larotonda G., Luna J., On the structure group of an infinite dimensional JB-algebra, J. Algebra 622 (2023), 366-403, arXiv:2206.05320.
  56. Lesniewski A., Ruskai M.B., Monotone Riemannian metrics and relative entropy on noncommutative probability spaces, J. Math. Phys. 40 (1999), 5702-5724, arXiv:math-ph/9808016.
  57. Lichnerowicz A., Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry 12 (1977), 253-300.
  58. Liu J., Yuan H., Lu X.-M., Wang X., Quantum Fisher information matrix and multiparameter estimation, J. Phys. A 53 (2020), 023001, 68 pages, arXiv:1907.08037.
  59. Mahalanobis P.C., On the generalized distance in statistics, Proc. Natl. Inst. Sci. India 2 (1936), 49-55.
  60. Man'ko V.I., Marmo G., Ventriglia F., Vitale P., Metric on the space of quantum states from relative entropy. Tomographic reconstruction, J. Phys. A 50 (2017), 335302, 29 pages, arXiv:1612.07986.
  61. Morozowa E.A., Cencov N.N., Markov invariant geometry on state manifolds, J. Sov. Math. 56 (1991), 2648-2669.
  62. Niestegge G., A simple and quantum-mechanically motivated characterization of the formally real Jordan algebras, Proc. A. 476 (2020), 20190604, 14 pages, arXiv:2019.0604.
  63. Paris M.G.A., Quantum estimation for quantum technology, Int. J. Quantum Inf. 7 (2009), 125-137, arXiv:0804.2981.
  64. Petz D., Monotone metrics on matrix spaces, Linear Algebra Appl. 244 (1996), 81-96.
  65. Provenzi E., Geometry of color perception. Part 1: structures and metrics of a homogeneous color space, J. Math. Neurosci. 10 (2020), 7, 19 pages.
  66. Rao C.R., Information and accuracy attainable in the estimation of statistical parameters, in Bulletin of the Calcutta Mathematical Society, Springer Ser. Statist., Vol. 37, Springer, Berlin, 1992, 235-247.
  67. Resnikoff H.L., Differential geometry and color perception, J. Math. Biol. 1 (1974), 97-131.
  68. Šafránek D., Discontinuities of the quantum Fisher information and the Bures metric, Phys. Rev. A 95 (2017), 052320, 13 pages, arXiv:1612.04581.
  69. Šafránek D., Simple expression for the quantum Fisher information matrix, Phys. Rev. A 97 (2018), 042322, 6 pages, arXiv:1801.00945.
  70. Seveso L., Albarelli F., Genoni M.G., Paris M.G.A., On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank, J. Phys. A 53 (2020), 02LT01, 13 pages, arXiv:1906.06185.
  71. Souriau J.-M., Structure des systèmes dynamiques, Dunod, Paris, 1970.
  72. Sussmann H.J., Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171-188.
  73. Suzuki J., Yang Y., Hayashi M., Quantum state estimation with nuisance parameters, J. Phys. A 53 (2020), 453001, 61 pages, arXiv:1911.02790.
  74. Tóth G., Apellaniz I., Quantum metrology from a quantum information science perspective, J. Phys. A 47 (2014), 424006, 39 pages, arXiv:1405.4878.
  75. Tulczyjew W.M., Poisson brackets and canonical manifolds, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 931-935.
  76. Uhlmann A., The ''transition probability'' in the state space of a *-algebra, Rep. Math. Phys. 9 (1976), 273-279.
  77. Uhlmann A., The metric of bures and the geometric phase, in Groups and Related Topics, Math. Phys. Stud., Vol. 13, Springer, Dordrecht, 1992, 267-274.
  78. Upmeier H., Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Math. Stud., Vol. 104, North-Holland Publishing Co., Amsterdam, 1985.
  79. Westerbaan B., van de Wetering J., A computer scientist's reconstruction of quantum theory, J. Phys. A 55 (2022), 384002, 52 pages, arXiv:2109.10707.
  80. Wootters W.K., Statistical distance and Hilbert space, Phys. Rev. D 23 (1981), 357-362.

Previous article  Next article  Contents of Volume 19 (2023)