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Abstract. Jordan algebras arise naturally in (quantum) information geometry, and we want
to understand their role and their structure within that framework. Inspired by Kirillov’s
discussion of the symplectic structure on coadjoint orbits, we provide a similar construction
in the case of real Jordan algebras. Given a real, finite-dimensional, formally real Jordan
algebra J , we exploit the generalized distribution determined by the Jordan product on the
dual J ⋆ to induce a pseudo-Riemannian metric tensor on the leaves of the distribution. In
particular, these leaves are the orbits of a Lie group, which is the structure group of J ,
in clear analogy with what happens for coadjoint orbits. However, this time in contrast
with the Lie-algebraic case, we prove that not all points in J ∗ lie on a leaf of the canonical
Jordan distribution. When the leaves are contained in the cone of positive linear functionals
on J , the pseudo-Riemannian structure becomes Riemannian and, for appropriate choices
of J , it coincides with the Fisher–Rao metric on non-normalized probability distributions
on a finite sample space, or with the Bures–Helstrom metric for non-normalized, faithful
quantum states of a finite-level quantum system, thus showing a direct link between the
mathematics of Jordan algebras and both classical and quantum information geometry.
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1 Introduction

Since their introduction in [46] in the context of the foundations of quantum mechanics, Jordan
algebras proved to be extremely versatile in both mathematics and physics. For instance, we
mention the link between Jordan algebras, symmetric and harmonic analysis [18, 19, 30, 52, 78],
the connection between Jordan algebras and quantum theories [7, 27, 29], and the role Jordan
algebras play in the reconstruction of quantum theories [62, 79]. We also refer to [43] for an
extensive discussion of different fields of application of Jordan algebras in both mathematics and
physics.

Motivated by classical and quantum information geometry, we want to present here another
point of view from which to explore Jordan algebras and their mathematics.

Information geometry is a multidisciplinary field of research in which different aspects of
mathematics, physics, statistics, and information theory coexist and mutually influence each
other. From a mathematical point of view, information geometry explores the mathemat-
ical structures living on suitable manifolds of classical probability distributions or quantum
states, known as parametric models, and their relation with information-theoretic and statis-
tical tasks [3, 4]. In particular, we have the fundamental concept of an information metric
(classical or quantum), a Riemannian metric tensor on a manifold M that parameterizes classi-
cal probability distributions or quantum states. The first example of such an information metric
is the so-called Fisher–Rao metric tensor, whose introduction in the classical context traces back
to the work of Fisher [31], Mahalanobis [59], and Rao [66]. The appearance of the Fisher–Rao
metric tensor in different applied contexts like population genetics and statistical inference is
partially explained by Cencov’s theorem [16] which states that, for finite outcome spaces, the
Fisher–Rao metric tensor is the only metric tensor which is invariant with respect to the class of
Markov kernels which are the most general type of maps respecting the convex geometry of the
space of probability distributions. Cencov’s theorem has recently been extended to continuous
outcome spaces [5, 6, 8, 33].

In the quantum case, the situation is not so simple. The first type of quantum information
metric appeared in the context of parameter estimation and quantum metrology already at the
end of the sixties in the work of Helstrom [36, 37, 38]. This Riemannian metric tensor is known
as the Bures–Helstrom because it was proved by Uhlmann [76, 77] that it is the “infinitesimal”
version of the distance function among states of a von Neumann algebra introduced by Bures [15]
to generalize a result by Kakutani [47]. Later, it has been proved by Petz [64] – building on
previous works by Cencov and Morozowa [61] – that uniqueness is lost in the finite-dimensional
quantum case, that is, there is no analogue of Cencov’s theorem mentioned above. This led to an
intensive study of the so-called monotone quantum metric tensors generalizing the Fisher–Rao
metric tensor to the quantum case [21, 28, 34, 35, 56, 60] and of their information-theoretic and
statistical applications [58, 63, 73, 74, 80]. However, the Bures–Helstrom metric tensor remains
the “best one” when it comes to quantum metrology because it leads to the tightest version of
the quantum Cramer–Rao bound [32, 63].

A common framework to deal with classical and quantum information geometry simultane-
ously is provided by W ∗-algebras [22, 23, 24, 44, 45, 54]. In this context, it has been recently
argued that the Fisher–Rao metric tensor and the Bures–Helstrom metric tensor are related
through the Jordan algebra associated with a W ∗-algebra [22, 23, 24]. These types of Jordan
algebras allow for a unification of the classical and quantum states in terms of normal states
(i.e., the normalized and normal positive linear functionals) on the algebra. When the Jordan al-
gebra is the associative Jordan algebra of self-adjoint elements in the commutative W ∗-algebra
L∞(X , µ) of complex-valued, µ-essentially bounded (equivalence classes of) functions on the
measurable space (X ,Σ), the normal states are probability measures on X which are absolutely
continuous with respect to µ, and we recover the classical case. The quantum case is recovered
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considering the Jordan algebra of self-adjoint elements in the W ∗-algebra B(H) of bounded lin-
ear operators on the complex Hilbert space H, so that the normal states are density operators
on H (i.e., trace-class, positive semidefinite operators with unit trace) which identify quantum
states. In this context, the Jordan product induces a Riemannian metric tensor on suitable
parametric models of normal states, which becomes the Fisher–Rao metric tensor when the
algebra is L∞(X , µ) and the Bures–Helstrom metric tensor when the algebra is B(H).

In the finite-dimensional case, it has been observed that the metric tensor on normal states
may be obtained as a kind of inverse of a contravariant tensor on the dual space of the Jordan
algebra determined by the Jordan product itself [23].

Let us recall that setting so that we can subsequently explain how to abstract and generalize
it in order to develop new insight into classical and quantum information geometry and at the
same time into the structure of Jordan algebras from that of Lie algebras operating on them.
Thus, we let A be a finite-dimensional, unital C∗-algebra, and let Asa be the self-adjoint part
of A and V be the self-adjoint part of the Banach dual A ∗ of A . Of course, there is some
duality here, as a ∈ Asa can be identified with a real-valued, linear function la on V , via

la(ξ) := ξ(a).

Since V is a finite-dimensional Banach space, a 7→ la yields an isomorphism between Asa

and V ∗ = A ∗∗
sa . In other words, the differentials of the linear functions on V associated with

elements in Asa generate the cotangent space T ∗
ξ V at each ξ.

The associative product of A leads to a commutative product {, } and to a non-commutative
product [[ , ]] on Asa, making Asa into a Banach–Lie–Jordan algebra [1]; they are

{a,b} :=
1

2
(ab+ ba), [[a,b]] :=

1

2
√
−1

(ab− ba).

We can then exploit these products to introduce a symmetric and an antisymmetric tensor on
the dual of Asa. Both these tensors play a role in the context of the geometry of finite-level
quantum systems and their open quantum dynamical evolutions [17, 20].

Specifically, we define

(R(dla, dlb)) (ξ) := l{a,b}(ξ) = ξ({a,b}),

and, of course, extend it by linearity to the entire cotangent space, obtaining a symmetric
contravariant tensor associated with the Jordan product.

In the same way that the Jordan structure induces the symmetric tensor R, the Lie structure
also induces an antisymmetric tensor

(Λ(df1, df2)) (ξ) := ξ ([[df1(ξ), df2(ξ)]]) .

Since the Lie algebra of the group U of unitary elements in A may be identified with the
space Asa of self-adjoint elements in A , the tensor Λ may be interpreted as the Kostant–
Kirillov–Souriau Poisson tensor associated with the coadjoint action of the unitary group U .
Importantly, for our purposes, also R can be studied with the help of the action of this Lie
algebra.

Returning to the covariant symmetric tensor R, it happens that, on certain orbits of the
Banach–Lie group of invertible elements of A (of which U is a subgroup), it makes sense to
consider the covariant tensor G := R−1, which becomes a Riemannian metric tensor when
the above-mentioned orbits lie in the space of positive linear functionals on A . The result is
a Riemannian metric tensor, which is precisely that used in classical and quantum information
geometry.
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The observation in [23] that we have just explained only hinted at the possibility of obtaining
Riemannian metric tensors with a coadjoint orbit-like procedure, and the main purpose of this
work is to systematically explore this possibility in the more general context of finite-dimensional,
formally real Jordan algebras.

In fact, the action of the Lie algebra of U is reminiscent of what happens in the case of
Lie groups and Lie algebras, where the Lie algebra induces a contravariant tensor on its dual
that can be inverted on the so-called coadjoint orbits in order to equip them with a symplectic
structure known as the Kirillov–Kostant–Souriau (KKS) symplectic form [48, 49, 53, 71].

Therefore, in this paper, we develop a more abstract perspective, moving from the Jordan
algebras arising from C∗-algebras to general Jordan algebras. In particular, this will clarify
how much of the above construction actually depends on the ambient C∗-algebras. In fact, we
shall find that, at least when we deal with finite-dimensional formally real Jordan algebras, the
ambient C∗-algebras play no role. On one hand, this will provide a deeper explanation of the
Fisher–Rao and Bures–Helstrom tensors and their generalizations. On the other hand, from this
more general perspective, we obtain Riemannian metric tensors on suitable models of positive
linear functionals on Jordan algebras that do not necessarily arise in the context of classical and
quantum information geometry as the spin factors that are recently being employed in a new
formulation of color perception theory [10, 11, 12, 65, 67].

As anticipated above, our guiding question is to what extent we can develop a coadjoint
orbit-like construction for Jordan algebras that is analogous to that of Lie algebras, at least in
finite dimensions. Specifically, we start from Kirillov’s fundamental observation that a coadjoint
orbit O ⊂ g⋆ of the Lie group G carries a natural homogeneous symplectic structure [48, 49].
Here, g and g⋆ denote the Lie algebra of G and its dual. Kirillov’s observation relates algebraic
structures to differential geometry and mathematical physics in a deep and very productive way,
led to spectacular results in representation theory, classical and quantum mechanics, and it is
closely related to geometric quantization [50].

As far as we know, no analogue of the coadjoint orbit construction for Lie algebras has been
investigated in the case of Jordan algebras, and the main purpose of this work is precisely
to fill this gap. To understand the picture from a more abstract perspective, we need to go
somewhat beyond the setting sketched above. We shall start by considering a general, finite-
dimensional algebra A, i.e., a finite-dimensional (real or complex) vector space with a bilinear
product • : A×A → A. At this moment, in contrast to the setting above, no further conditions
like associativity or identities of Jacobi/Jordan type are assumed. We denote with A⋆ the dual
space of A, and the corresponding pairing is denoted by ⟨·, ·⟩. Due to the finite-dimensionality,
we have the identification A⋆⋆ ∼= A, and for the tangent and cotangent spaces of A⋆, we then
have TξA⋆ ∼= A⋆ and T ∗

ξ A⋆ ∼= A⋆⋆ ∼= A. We may then represent the product • via

⟨ξ, a • b⟩ for ξ ∈ A⋆, a, b ∈ A. (1.1)

Furthermore, this induces a multiplication on C∞(A⋆) via

f • g(ξ) := ⟨ξ, dξf • dξg⟩, (1.2)

and for f ∈ C∞(A⋆), we may define its A-dual vector field of f as(
∇A(f)

)
ξ
(g) := {f, g}A(ξ).

Note that, in general, this is not a gradient because • need not be symmetric, but we use the
symbol ∇ because it satisfies many of the formal identities of gradients.

The multiplication in equation (1.2) is of course compatible with the product • in the sense
that, identifying a ∈ A with the linear functional fa(ξ) := ⟨ξ, a⟩, the inclusion A ↪→ C∞(A⋆) is
an algebra monomomorphism

fa • fb = fa•b,
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justifying the symbol • to denote the multiplication on both A and C∞(A⋆) ⊃ A. The auto-
morphisms of A, i.e., the linear isomorphisms g : A → A with g(a • b) = (ga) • (gb), form a Lie
group. The Lie algebra of that group consists of the derivations, i.e., the linear maps d ∈ gl(A)
with d(a • b) = (da) • b + a • (db). Moreover, we have the structure Lie group G(A) whose Lie
algebra is generated by left multiplications, i.e., by the maps la : (b 7→ a • b) ∈ gl(A).

Therefore, even though we do not assume A to be a Lie algebra, there is a Lie algebra that
is naturally associated to A, and we may hope to use its theory to gain insight about A itself.
This works to some extent, but a problem arises from the fact that the A-dual distribution HA

on A⋆ defined by

HA
ξ :=

{(
∇A(f)

)
ξ
| f ∈ C∞(A⋆)

}
⊂ TξA⋆.

is in general not integrable. We recall that, in the Lie algebra case,HA is integrable, and its leaves
are precisely the coadjoint orbits which carry a symplectic structure induced by equation (1.2).
Because HA is not integrable for general algebras, we cannot expect the same level of generality
as in Lie algebras.

However, the results become stronger if we also assume some additional structures on A.
Associativity already gives us some leverage, but the more specific case that we are interested
in here is when A is a Jordan algebra. Our strategy then is to combine this Jordan structure,
and the identities resulting from it, with the Lie algebra structure that we just have identified.

Thus, we consider a finite-dimensional real Jordan algebra A = J . In this case, we can also
define an extended structure Lie algebra ĝ(J ) that maps surjectively onto g(J ) [13, 52, 55].
This algebra is the direct sum Der0(J ) ⊕ J of the inner derivations (those generated by left
multiplications lx with algebra elements x) and J itself. The Lie bracket on Der0(J ) is the
commutator, while, for x, y ∈ J , it is [x, y] := [lx, ly] ∈ Der0(J ), and, for d ∈ Der0(J ) and
x ∈ J , it is [d, x] = −[x, d] := d(x) ∈ J . Therefore, putting k = Der0(J ), mJ = J , we
have [k, k] ⊂ k, [k,mJ ] ⊂ mJ , [mJ ,mJ ] = k, i.e., we have a transvective symmetric pair (see
Definition 2.5) which provides us with further structure to work with.

The generalized distribution HJ on J ⋆ is still not integrable in general, but the bilinear
form Gξ induced by equation (1.1) on HJ

ξ is symmetric, and therefore it defines a pseudo-

Riemannian metric on the mJ -regular part of each G(J )-orbit Oreg
mJ ⊂ J ⋆ (see Definition 2.3).

On J there is the symmetric, bilinear form τ(x, y) := tr l{x,y}, which is also associative
with respect to the Jordan product, and we can use it to decompose J [52, p. 59]. Specifi-
cally, in the case of positive Jordan algebras, τ is positive definite so that there is a canonical
identification J ∼= J ⋆, and we can also derive additional properties from the above-mentioned
decomposition. Each ξ ∈ J ⋆ has a spectral decomposition associating with ξ its spectral coeffi-
cients (λi)

r
i=1 ∈ Rr, where r denotes the rank of J . The pair (n+, n−) counting the number of

positive and negative spectral coefficients is called the spectral signature of ξ. We then show the
following:

Theorem A (cf. Theorem 4.7). If J is a positive simple real Jordan algebra, then the orbits of
the structure group G(J ) consist of all elements with the same spectral signature.

We also characterize the regular points (i.e., those where the generalized distribution HJ is
integrable) in such a G(J )-orbit in Theorem 4.8 and describe the pseudo-Riemannian metric Gξ

at each regular point ξ ∈ J ⋆ in Proposition 4.9. Specifically, let ΩJ denote the cone of squares
of J , i.e., the interior of the set

{
x2 | x ∈ J

}
. Then ΩJ is the G(J )-orbit of the identity 1J .

The characterizations in Theorem 4.8, Proposition 3.3, and Proposition 4.9 lead to the following
remarkable description:

Theorem B. Let J be a positive simple real Jordan algebra. Then all points of a G(J )-orbit
O ⊂ J ⋆ are mJ -regular iff O ⊂ ΩJ or O ⊂ −ΩJ . The form G on O is positive definite in the
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first and negative definite in the second case, thus defining a Riemannian metric on O which is
invariant with respect to the action of the automorphism group of J .

For all regular ξ /∈ ±ΩJ the form Gξ is indefinite, so the definiteness of Gξ gives a new
characterization of ΩJ . We provide descriptions of the orbits O and the metric G for the
standard examples of positive simple real algebras. Moreover, the above results easily generalize
to the case of non-simple positive Jordan algebras, as these algebras are direct sums of positive
simple Jordan algebras.

This work is structured as follows. In Section 2, we set the notation and recall some stan-
dard results on generalized distributions and group actions on manifolds that are needed. In
Section 3, we discuss the structure group and the generalized distributions on an arbitrary finite-
dimensional algebra A. In Section 4, we focus on Jordan algebras, prove the main results, and
discuss relevant examples. Let us stress that some results recalled in Section 4 are well known
to researchers working with Jordan algebras, but we decided to recall them nonetheless in order
to make the work as self-contained as possible for readers, perhaps coming from information ge-
ometry, who are not familiar with Jordan algebras. Finally, in Section 5, we discuss our results
in relation with some important established results on the mathematics and geometry of Jordan
algebras.

2 Preliminary material

2.1 Notational conventions

For a finite-dimensional (real or complex) vector space V , we denote by Gl(V ) the Lie group of
linear automorphisms, whose Lie algebra gl(V ) consists of all linear endomorphisms of V .

For finite-dimensional vector spaces V , W and U , we define the contraction map

⟨·, ·⟩V : V ⋆ ⊗ V ⊗ U −→ U, ⟨α, v ⊗ u⟩V := α(v)u, (2.1)

where V ⋆ denotes the dual space of V , and we shall usually omit the subscript if this causes no
ambiguity. The notation (2.1) can also be used to denote maps

V ⋆ ⊗ ΛkV ⋆ ⊗ U −→ Λk−1V ⋆ ⊗ U, V ⋆ ⊗ SkV ⋆ ⊗ U −→ Sk−1V ⋆ ⊗ U,

denoting by SkV ⋆ the symmetric k-forms, since ΛkV ⋆ ↪→ V ⊗Λk−1V ⋆ and SkV ⋆ ↪→ V ⊗Sk−1V ⋆

are canonically included.
Finally, the dual of a linear map ϕ : V → W is denoted as

ϕ⋆ : W ⋆ −→ V ⋆, ⟨θ, ϕ(v)⟩W = ⟨ϕ⋆θ, v⟩V .

2.2 Generalized distributions

Let M be a finite-dimensional, real smooth manifold. A generalized distribution on M is a family
D = (Dp)p∈M of subspaces Dp ⊂ TpM . We let Γ(D) be the set of (smooth) vector fields X on M
with Xp ∈ Dp for all p, and we call D smooth if for each v ∈ Dp there is a vector field X ∈ Γ(D)
with Xp = v.

Given a smooth generalized distribution D, we define the Frobenius tensor Fp at p ∈ M as

Fp : Λ2Dp −→ TpM/Dp, (Xp, Yp) 7−→ [X,Y ]p mod Dp

for X,Y ∈ Γ(D). It is straightforward to verify that Fp(X,Y ) depends on Xp and Yp only, i.e.,
F = (Fp)p∈M is a well-defined tensor field. We also define the generalized distribution

[D,D]p := Dp + {[X,Y ]p | X,Y ∈ Γ(D)},

so that the image of Fp is [D,D]p/Dp.
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Definition 2.1. We call a smooth generalized distribution D involutive at p ∈ M , if Fp = 0 or,
equivalently, if [D,D]p = Dp, and we call it involutive, if this holds for every p.

Furthermore, an (immersed) submanifold N ⊂ M with TpN = Dp for all p ∈ N is called
an integral leaf of D. If there is an integral leaf of D containing p, then we call D integrable
at p ∈ M and call p an integral point of D; if this is the case for each p ∈ M , then we call D
integrable.

Clearly, if D is integrable (at p), then it is also involutive (at p); according to Frobenius’
theorem, the converse of this statement holds if D has constant rank. However, if the rank of D
is non-constant, then the converse may fail to hold [72].

2.3 G-manifolds

Let G be a finite-dimensional, real Lie group with identity element e, Lie algebra g ∼= TeG, and
let M be a G-manifold, i.e., a finite-dimensional, real smooth manifold with a smooth left action
π : G×M → M , (g, p) 7→ g · p. For p ∈ M we define the stabilizer of p to be the subgroup

Hp := {g ∈ G | g · p = p} ⊂ G with Lie algebra hp ⊂ g.

Evidently, Hg·p = gHg−1, and hg·p = Adg(hp), so that the stabilizer on each G-orbit is unique
up to conjugation.

We define the orbit distribution on M by

Dg
p := {(X∗)p | X ∈ g},

where X∗ denotes the action field on M . Evidently, Dg is integrable, as the G-orbits are integral
leaves of Dg. Moreover,

X ∈ hp ⇔ (X∗)p = 0.

Also recall that the map X 7→ X∗ is a anti-homomorphism of Lie algebras, i.e.,

[X,Y ]∗ = −[X∗, Y∗]. (2.2)

For any linear subspace m ⊂ g, we define the smooth generalized distribution Dm by

Dm
p := {(X∗)p | X ∈ m} ⊂ Dg

p = Tp(G · p), (2.3)

and evidently,

(X∗)p ∈ Dm
p ⇔ X ∈ m+ hp. (2.4)

Lemma 2.2. Let m ⊂ g be a linear subspace. Then the following are equivalent:

(1) Dm is involutive at p ∈ O,

(2) [m,m] ⊂ m+ hp,

(3) D[m,m]
p ⊂ Dm

p .

Proof. For X,Y ∈ m, Fp(Xp, Yp) = 0 iff [X∗, Y∗]p ∈ Dm
p , which, by equation (2.2), is the case

iff ([X,Y ]∗)p ∈ Dm
p , and, by equation (2.4), this is the case iff [X,Y ] ∈ m + hp, showing the

equivalence of the first two conditions.
The second condition is equivalent to saying that for each X ∈ [m,m] there is a Y ∈ m

such that X − Y ∈ hp or, equivalently, that for each X ∈ [m,m] there is a Y ∈ m such
that (X∗)p = (Y∗)p, and this is evidently equivalent to the third condition. ■
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Definition 2.3. Let M be a G-manifold and m ⊂ g a linear subspace. We call p ∈ M an
m-regular point if Dm

p = TpO, where O ⊂ M is the G-orbit of p. The subset of m-regular points
in O is denoted by Oreg

m ⊂ O.

As the rank of Dm
p is a lower semicontinuous function in p, Oreg ⊂ O is open (but possibly

empty). As we shall see in later sections, Oreg
m may be a proper subset of O and is not necessarily

connected.

Corollary 2.4. Suppose that m ⊂ g is a linear subspace such that

g = m+ [m,m]. (2.5)

Then for each p ∈ M the following are equivalent:

(1) p is involutive,

(2) p is integrable,

(3) p is an m-regular point.

In this case, the maximal integral leaf through p is the connected component of p in

Oreg
m ⊂ O = G · p.

Proof. By Lemma 2.2, p is integrable iff D[m,m]
p ⊂ Dm

p , and as g = m + [m,m], this is the case
iff Dm

p = Dg
p, i.e., iff p is m-regular. It follows that any integral leaf through p must be (an open

subset of) Oreg
m ⊂ O, whence the maximal (connected) leaf through p is its path component

in Oreg
m . ■

Definition 2.5. A symmetric pair is a pair (g, k) of Lie algebras with a decomposition g = k⊕m
satisfying

[k, k] ⊂ k, [k,m] ⊂ m, [m,m] ⊂ k. (2.6)

We call this pair transvective, if g is generated by m as a Lie algebra, i.e., if [m,m] = k.

Clearly, equation (2.6) is equivalent to saying that the involution σ : g → g with k and m as
the (+1)- and (−1)-eigenspace, respectively, is a Lie algebra automorphism.

3 Structure groups and canonical distributions
on duals of algebras

In this section, we shall consider a finite-dimensional algebra A, by which we simply mean
a finite-dimensional (real or complex) vector space with a bilinear product • : A×A → A, i.e.,
a constant (2, 1)-tensor. We do not assume any further conditions on this multiplication such
as associativity, Jacobi or Jordan identities, but we shall later discuss the general definitions in
each of these cases.

The dual of • is a map A⋆ → A⋆ ⊗ A⋆, and as TξA⋆ ∼= A⋆, we may regard this as a linear
bivector field on A⋆:

RA ∈ Γ(A⋆, TA⋆ ⊗ TA⋆), RA
ξ (a, b) := ⟨ξ, a • b⟩ (3.1)

for all a, b ∈ A. Therefore, there is an induced multiplication on the space C∞(A⋆) of real-valued,
smooth functions on A⋆ which by abuse of notation we also denote by •, given by

f • g(ξ) :=
(
RA)

ξ
(dξf, dξg) = ⟨ξ, dξf • dξg⟩ (3.2)
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with the canonical identification dξf, dξg ∈ T ∗
ξ A⋆ ∼= A⋆⋆ ∼= A. In particular, regarding A ⊂

C∞(A⋆) as the set of linear functions fa(ξ) := ⟨ξ, a⟩, equation (3.2) implies

fa • fb = fa•b,

justifying the ambiguous use of the symbol •. Contraction in the first entry yields a linear map

♯ξ : T ⋆
ξ A⋆ −→ TξA⋆, θ 7−→ θ⌟RA

ξ , (3.3)

whose image we call the A-dual distribution HA on A⋆ by

HA
ξ := ♯ξ(T

⋆
ξ A⋆) ⊂ TξA⋆. (3.4)

Definition 3.1. For a finite-dimensional algebra (A, •) we define the following:

(1) For a ∈ A we let la ∈ gl(A) be the map (b 7→ a • b) ∈ gl(A).

(2) The structure Lie algebra of A is the Lie subalgebra g(A) ⊂ gl(A) generated by mA :=
{la | a ∈ A}.

(3) The structure Lie group of A is the connected Lie subgroup G(A) ⊂ Gl(A) with Lie
algebra g(A).

(4) A derivation of A is a linear map d ∈ gl(A) with d(a • b) = (da) • b+ a • (db).
(5) An automorphism of A is a linear isomorphism g : A → A with g(a • b) = (ga) • (gb).

It is straightforward to verify that the automorphisms and derivations form a regular Lie
subgroup and a Lie subalgebra Aut(A) ⊂ Gl(A) and Der(A) ⊂ gl(A), respectively, called the
automorphism group and derivation algebra of A, respectively. In fact, Der(A) is the Lie algebra
of Aut(A). Moreover, g ∈ Aut(A) and d ∈ Der(A) iff for all a ∈ A we have

glag
−1 = lga, [d, la] = lda. (3.5)

That is, the adjoint action of Aut(A) and Der(A) on gl(A) preserves the subspace mA and hence
the structure Lie algebra g(A) and structure Lie group G(A).1

For ξ ∈ A⋆ and a, b ∈ A, we have

⟨l∗a(ξ), b⟩ = ⟨ξ, la(b)⟩ = ⟨ξ, a • b⟩ (3.1)
=

〈
a⌟RA

ξ , b
〉 (3.3)

= ⟨♯a, b⟩ξ,

so that l∗a = ♯a ∈ Γ(A⋆, T ∗A⋆), regarded as a linear 1-form on A⋆. It follows that

HA
ξ = DmA

ξ (3.6)

with HA
ξ from equation (3.4) and mA from Definition 3.1, regarding A⋆ as a G(A)-manifold via

the dual representation ı : G(A) → Gl(A⋆).
More generally, for a smooth function f ∈ C∞(A⋆), we define the A-dual vector field of f as

∇A(f) := ♯df ∈ X(A⋆). (3.7)

Since ♯a = ♯fa = ∇A(fa), it follows that the A-dual distribution may also be characterized
by

HA
ξ =

{(
∇A(f)

)
ξ
| f ∈ C∞(A⋆)

}
,

and unwinding the definitions, it easily follows that for f, g ∈ C∞(A⋆) that(
∇A(f)

)
(g) = {f, g}A.

1Actually, it would be more accurate to call g(A) and G(A) the left-structure Lie algebra and group, respec-
tively, and to define the right-structure Lie algebra and group analogously. However, for simplicity we shall restrict
ourselves to the left-structure case, as the right-structure case can be treated in complete analogy.
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Remark 3.2. If the multiplication • is symmetric (e.g., if A is a Jordan algebra), the dual
vector field ∇A(f) is usually referred to as the gradient vector field of f , while in the case of an
antisymmetric multiplication • (e.g., if A is a Lie algebra), it is called the Hamiltonian vector
field of f . That is, the term A-dual vector field subsumes both cases.

We wish to caution the reader that in case of a skew-symmetric multiplication •, the no-
tation ∇A(f) for the Hamiltonian vector does not match the standard convention. We use it
nevertheless to unify our notation.

If g ∈ Aut(A) is an automorphism, then by equation (3.5) the action of g∗ on A⋆ preserves the
distribution HA and hence permutes integral leaves of equal dimensions, preserving mA-regular
points.

As it turns out, if the product • is symmetric or skew-symmetric, then there is a canonical
bilinear pairing on HA.

Proposition 3.3. Let (A, •) be a finite-dimensional real algebra such that • is symmetric (skew-
symmetric, respectively). Then on HA

ξ = DmA
ξ ⊂ TξA⋆ there is a canonical non-degenerate

symmetric (skew-symmetric, respectively) bilinear form, given by

Gξ(l
∗
a(ξ), l

∗
b (ξ)) := ⟨ξ, a • b⟩. (3.8)

Furthermore, G is preserved by the action of the automorphism group Aut(A).

Proof. Since ⟨ξ, a • b⟩ = ⟨l∗a(ξ), b⟩ = ±⟨l∗b (ξ), a⟩, where the sign ± depends on the symmetry or
skew-symmetry of •, it follows that G is indeed well defined and non-degenerate.

Finally, if g ∈ Aut(A) is an automorphism, then equation (3.5) implies that

g∗l∗a
(
g−1

)∗
= l∗g−1a

and from here, the invariance of G under the action of the automorphism group follows. ■

Definition 3.4. Let A be an algebra. A G(A)-orbit O ⊂ A⋆ is called mA-regular if Oreg
mA = O.

We shall now give classes of examples of these notions.
1. Lie algebras. Let (A, •) = (g, [·, ·]) be a Lie algebra. Then the induced section Λ :=

Rg ∈ Γ
(
g⋆,Λ2Tg⋆

)
from equation (3.1) is a skew-symmetric bi-vector field, and the Jacobi

identity implies that the Schouten–Nijenhuis bracket [Λ,Λ] ∈ Γ(g⋆,Λ3Tg⋆) vanishes [57, 75], so
that Λ defines a linear Poisson structure {·, ·} on g⋆, also known as the Kirillov–Kostant–Souriau
structure [51].

Comparing our notions with those established for Poisson manifolds, we observe that for
a function f ∈ C∞(g⋆), the g-gradient vector field ∇A(f) corresponds to the Hamiltonian vector
field Xf for Poisson manifolds, so that the dual distribution HA

ξ from equation (3.4) is the
Hamiltonian distribution of the Poisson manifold. It is integrable, as the Hamiltonian vector
fields satisfy the identity

[Xf , Xg] = −X{f,g}.

The Jacobi identity implies that la = ada satisfies [la, lb] = l[a,b], so that mA is closed under the
commutator bracket and therefore, g(A) = mA ∼= g/z(g). That is, the action of the structure
group is induced by the coadjoint action of G on g⋆, and the skew-symmetric non-degenerate
bilinear form G on HA from equation (3.8) coincides with the symplectic form on each coadjoint
orbit in g⋆. By the Jacobi identity, this action consists of automorphisms of the Lie algebra
structure, whence this symplectic form is preserved under the coadjoint action.

Therefore, the integral leaves of mA are the coadjoint orbits of g⋆, equipped with their canon-
ical symplectic form, and hence, each orbit is regular in the sense of our definition.
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2. Associative algebras. The associativity of the product • is equivalent to saying that
lalb = la•b, so that {la | a ∈ A} ⊂ gl(A) is a subalgebra, which means that the structure
algebra g(A) equals mA with the Lie bracket being the commutator.

Thus, if we regard A as a Lie algebra with the Lie bracket [a, b] := a • b − b • a, then the
G(A)-orbits are the coadjoint orbits on A⋆, regarded as the dual of a Lie algebra and thus
described in the preceding paragraph.

Note that by Proposition 3.3 the bilinear form G on these orbits only exists if • is symmetric
or antisymmetric.

If A is a commutative and associative algebra, then G(A) and g(A) are abelian Lie groups,
respectively. In this case, the G(A)-orbits of A⋆ are diffeomorphic to the direct product of
a torus and Euclidean space.

In the two preceding cases, mA is closed under Lie brackets, so that it coincides with the
structure algebra g(A). This implies that, by the very definition, mA is integrable having the
G(A)-orbits in A⋆ as leaves. In particular, all orbits are mA-regular.

In contrast, for a Jordan algebra J , it is no longer true that mJ is a Lie algebra, so that
not all G(J )-orbits on the dual J ⋆ are mJ -regular in our sense. Since the Jordan product is
symmetric, the non-degenerate form G from (3.8) defines a pseudo-Riemannian metric on the
regular part Oreg

mJ of each orbit.

We shall describe these structures on the G(J )-orbits on J ⋆ and the pseudo-Riemannian
metric G in more details, and we will see how, for some specific type of positive Jordan algebras,
and suitable orbits, G is intimately connected with either the Fisher–Rao metric tensor or
with the Bures–Helstrom metric tensor used in classical and quantum information geometry,
respectively. This result strengthen the connection between Jordan algebras and information
geometry initially hinted at in [22, 23].

4 Jordan algebras and Jordan distributions

Let J be a real, finite-dimensional Jordan algebra, that is, a real vector space endowed with
a bilinear symmetric product {·, ·}, satisfying for x, y ∈ J the Jordan identity

{{x, y}, {x, x}} = {x, {y, {x, x}}}.

By the notions established in the preceding section, we may associate with a Jordan algebra
the symmetric bivector field RJ ∈ Γ

(
J ⋆, S2(TJ ⋆)

)
from equation (3.1), the musical operator

#J : T ∗J ⋆ → TJ ⋆ from equation (3.3), the J -dual vector field ∇J f = #df ∈ X(J ⋆) from (3.7),
and the induced J -dual distribution HJ ⊂ TJ ⋆ from equation (3.4).

In particular, we have HJ = DmJ by equation (3.6), where

mJ = {l∗x | x ∈ J } ⊂ gl(J ⋆)

is the space of (left-)multiplications with elements x ∈ J , acting on the dual space J ⋆. For
every mJ -regular point ξ, the vector space HJ

ξ = DmJ
ξ carries the non-degenerate symmetric

bilinear form Gξ defined in equation (3.8).

As we pointed out before, the space mJ of (left-)multiplication in J is not closed under Lie
brackets in general. However, the following is known.

Lemma 4.1 (cf. [52, Lemma IV.7]). For x, y ∈ J , the commutator [lx, ly] is a derivation of J ,
and for each d ∈ Der(J )

[d, [lx, ly]] = [ldx, ly] + [lx, ldy]. (4.1)
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We denote by Der0(J ) the span of all elements of the form [lx, ly] for x, y ∈ J . By equa-
tion (4.1), Der0(J ) ⊂ Der(J ) is an ideal whose elements are called inner derivations of J . This
fact can be used to describe the structure Lie algebra of J .

Definition 4.2. We define the extended structure Lie algebra ĝ(J ) of J as follows. As a vector
space, ĝ(J ) is defined by

ĝ(J ) = Der0(J )⊕ J .

The Lie bracket on ĝ(J ) is defined as follows:

� on Der0(J ) ⊂ Der(J ) ⊂ gl(J ), the Lie bracket is just the commutator between linear
maps;

� for d ∈ Der0(J ) and x ∈ J , [d, x] = −[x, d] := d(x) ∈ J ;

� for x, y ∈ J we set [x, y] := [lx, ly] ∈ Der0(J ).

In fact, the Jacobi identity for this bracket is easily verified using the definitions and equa-
tion (4.1). By the definition of this Lie bracket, it follows that (ĝ(J ),Der0(J )) is a transvective
symmetric pair in the sense of Definition 2.5.

There is a canonical Lie algebra representation of ĝ(J ) on J , called the standard represen-
tation, defined by

ϕ : ĝ(J ) −→ gl(J ),

{
ϕ(d) := d for d ∈ Der0(J ) ⊂ gl(J ),

ϕ(x) := lx for x ∈ J .
(4.2)

Indeed, this defines a Lie algebra homomorphism by the definition of the Lie bracket on ĝ(J )
and by equation (3.5).

Observe that the image ϕ(ĝ(J )) ⊂ gl(J ) is generated by all lx, x ∈ J , whence equals the
structure Lie algebra g(J ) from Definition 3.1. Thus, there is a surjective Lie group homomor-
phism Ĝ(J ) → G(J ) with differential ϕ, where G(J ) ⊂ Gl(J ) is the structure group from
Definition 3.1.2

In general, ϕ may fail to be injective (the kernel of ϕ contains the center of z(J ) ⊂ J ⊂
g(J )), so that the structure algebra g(J ) and the extended structure algebra ĝ(J ) may not be
isomorphic.

Then we obtain the following integrability criterion.

Proposition 4.3. Let J be a Jordan algebra. Then, for the distribution HJ from equation (3.4),
the following assertions are equivalent.

(1) HJ
ξ is involutive at ξ ∈ J ⋆,

(2) HJ
ξ is integrable at ξ ∈ J ⋆,

(3) Der0(J )·ξ ⊂ J ·ξ, where the multiplication refers to the dual action of Der0(J ), J ⊂ ĝ(J )
on J ⋆.

If this is the case, then the maximal integral leaf through ξ is the connected component of ξ
in Oreg

mJ ⊂ O = G(J ) · ξ.

Proof. The map ϕ from equation (4.2) defines an action of Ĝ(J ) on J ⋆ such that, by equa-
tion (3.6), it is HJ

ξ = DJ
ξ . Evidently, Ĝ(J )·ξ = G(J )·ξ. Since (ĝ(J ),Der0(J )) is a transvective

symmetric pair, equation (2.5) is satisfied for m := J ⊂ ĝ(J ), and the assertion now follows
from Corollary 2.4, as by equation (2.3) it is

D[J ,J ]
ξ = DDer0(J )

ξ = Der0(J ) · ξ, DJ
ξ = J · ξ. ■

2Definition 3.1 for a Jordan algebra J coincides with the definition of the structure Lie group and the structure
Lie algebra of a Jordan algebra, e.g., in [52, Chapter IV].
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4.1 Jordan frames and the Peirce decomposition

Let J be a real finite-dimensional Jordan algebra. We define the symmetric bilinear form τ
on J by

τ(x, y) := tr l{x,y}. (4.3)

Observe that for x, y ∈ J

τ(gx, gy) = τ(x, y), g ∈ Aut(J ), τ(dx, y) + τ(x, dy) = 0, d ∈ Der(J ).

Namely, if g ∈ Aut(J ), then τ(gx, gy) = tr lg{x,y} = tr gl{x,y}g
−1 = τ(x, y), and the second

identity follows as Der(J ) is the Lie algebra of Aut(J ).

A symmetric bilinear form β on J is called associative, if for all x, y, z ∈ J

β({x, y}, z) = β(x, {y, z}), (4.4)

i.e., if all lx are self-adjoint w.r.t. β. Then the following is known.

Proposition 4.4 ([52, p. 59]). The bilinear form τ from equation (4.3) is associative.

An element c ∈ J is called an idempotent if c2 := {c, c} = c. Such an idempotent is called
primitive, if there is no decomposition c = c1+c2 with idempotents c1, c2 ̸= 0. For an idempotent
c ∈ J , lc is diagonalizable with eigenvalues in

{
0, 12 , 1

}
[30, Proposition III.1.2]. Therefore, it

follows that

τ(c, c) = tr l{c,c} = tr lc ≥ 1,

as the trace is the sum of the eigenvalues, and c is in the 1-eigenspace of lc.

If J has an identity element 1J , then a Jordan frame of J is a set (ci)
r
i=1 ⊂ J of primitive

idempotents such that

{ci, cj} = δijci and c1 + · · ·+ cr = 1J . (4.5)

Note that

τ(ci, cj) = τ({ci, ci}, cj)
(4.4)
= τ(ci, {ci, cj}) = 0 for i ̸= j,

so that (ci)
r
i=1 is an τ -orthogonal system. From this, one can show that the maps lci commute

pairwise [30, Lemma IV.1.3].

Let c := span{ci}. Then, as all lci are diagonalizable, there is a τ -orthogonal decomposition
of J into the common eigenspace of lci , i.e., into spaces of the form

Jρ := {x ∈ J | lc(x) = ρ(c)x, c ∈ c}

for some ρ ∈ c⋆. Since ci has only eigenvalues
{
0, 12 , 1

}
and ρ(1J ) = 1, it follows that ρ =

1
2(θi+θj), i ≤ j, where (θi)

r
i=1 ∈ c⋆ is the dual basis to (ci)

r
i=1. That is, we have the τ -orthogonal

eigenspace decomposition

J =
⊕
i≤j

Jij , (4.6)

where Jij := J 1
2
(θi+θj)

. This is called the Peirce decomposition of J with respect to the Jordan

frame (ci)
r
i=1. For convenience, we let Jji := Jij for i < j.
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4.2 Semi-simple and positive Jordan algebras

For a Jordan algebra J , we define the radical of J as the null space of τ , i.e.,

r(J ) := {a ∈ J | τ(a, x) = 0 for all x ∈ J }.

Evidently, r(J ) ⊂ J is an ideal by Proposition 4.4.
We call J semi-simple if r(J ) = 0, i.e., if τ is non-degenerate. Moreover, we call J positive

or formally real, if τ is positive definite.
We shall now collect some known results on semi-simple and positive Jordan algebras.

Proposition 4.5. Let J be a semi-simple real Jordan algebra. Then the following hold.

(1) J has a decomposition J = J1⊕· · ·⊕Jk into simple Jordan algebras Ji, i.e., such that Ji

does not contain a non-trivial ideal [52, Theorem III.11].

(2) J has an identity element 1J [52, Theorem III.9].

(3) J is positive iff it admits a positive definite associative bilinear form β [30, p. 61].

(4) If J is positive, then for every x ∈ J there is a Jordan frame {ci}ri=1 with x ∈ span({ci}ri=1)
[30, Theorem III.1.2]. In particular, J has Jordan frames.

(5) If J is simple and positive and (ci)
r
i=1 and (c′i)

r
i=1 are Jordan frames, then there is

an automorphism h ∈ Aut0(J ) with h(ci) = c′i for all i [30, Theorem IV.2.5],3 where
Aut0(J ) ⊂ Aut(J ) is the identity component. In particular, all Jordan frames have the
same number r of elements, and r is called the rank of J .

(6) If J is positive, then for the Peirce spaces in (4.6) we have [30, Theorem IV.2.1]

{Jij ,Jkl} ⊂


0 if {i, j} ∩ {j, k} = ∅,

Jjl if i = k, j ̸= l,

Jii + Jjj if {i, j} = {k, l}.

(7) If J is positive, then Jii = span(ci) is one-dimensional for all i.

(8) If J is positive, simple and of rank r, then Jjk ̸= 0 for all 1 ≤ j ≤ k ≤ r [30, Theo-
rem IV.2.3].

Proof. We only need to show point (7), as it appears not to be explicitly stated in the literature.
Note that Jii is a subalgebra, as {Jii,Jii} ⊂ Jii by the product relations in point (6), and by
definition ci = 1Jii . Since τ |Jii is a positive definite associative bilinear form, it follows from
point (3) that Jii is a positive Jordan algebra as well. However, since ci = 1Jii is primitive, it
follows that each Jordan frame of Jii consists of ci only, so that by (4) each x ∈ Jii must be
a multiple of ci = 1Jii . ■

The fourth of these results is called the spectral theorem of positive Jordan algebras. It shows
that each x ∈ J admits a decomposition

x =
r∑

i=1

λici (4.7)

for a Jordan frame (ci)
r
i=1, and the decomposition in equation (4.7) is referred to as the spectral

decomposition of x. The λi’s are called the spectral coefficients of x. Evidently, the tuple
(λi)

r
i=1 is defined only up to permutation of the entries. Furthermore, we call the pair (n+, n−),

where n+ and n− are the number of positive and negative spectral coefficients of x the spectral
signature of x.

3In [30] it is only stated that there exists an element h ∈ Aut(J ) with the asserted property; however,
h ∈ Aut0(J ) follows from the proof.
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Lemma 4.6. Let J be a semi-simple, positive Jordan algebra, (ci)
r
i=1 a Jordan frame of J and

x =
∑

i λici. Then, it holds

lx(J ) =

( ⊕
λa+λb ̸=0

Jab

)
⊕
(⊕

a,µ

Jaµ

)
,

Der0(J ) · x =

( ⊕
λa−λb ̸=0

Jab

)
⊕
(⊕

a,µ

Jaµ

)
,

g(J ) · x =
⊕
a,i

Jai, (4.8)

where we use the index convention that i, j run over 1, . . . , r, while a, b run over those indices
with λa ̸= 0, and ν, µ over those indices with λν = 0.

Proof. By point (7) in Proposition 4.5, the Peirce decomposition in equation (4.6) reads

J = c⊕
⊕
a<b

Jab ⊕
⊕
a,µ

Jaµ ⊕
⊕
µ<ν

Jµν , c := span{ci}.

As lx(xij) =
1
2(λi + λj)xij for xij ∈ Jij , the first equality in equation (4.8) is immediate.

For the second equality, recall that Der0(J ) is spanned by [lxij , lykl ] for xij , yij ∈ Jij , and we
compute

[lxij , lykl ](x) =

{
xij ,

1

2
(λk + λl)ykl

}
−
{
ykl,

1

2
(λi + λj)xij

}
=

1

2
(λk + λl − λi − λj){xij , ykl}.

Therefore, the relation “⊂” in the second equality in equation (4.8) follows easily from the
bracket relation of the Peirce spaces in point (6) of Proposition 4.5. For the converse inclusion,
we compute

[lx, lxij ](x) = {x, {xij , x}} −
{
xij , x

2
}
=

1

4
(λi + λj)

2xij −
1

2

(
λ2
i + λ2

j

)
xij

= −1

4
(λi − λj)

2xij .

The third equation then follows as g(J ) ·x = lx(J )+Der0(J ) ·x, and λa+λb = λa−λb = 0
cannot both hold for λa, λb ̸= 0. ■

Theorem 4.7. For a positive simple Jordan algebra J , the following hold:

(1) The orbits of Aut0(J ) are the sets of elements with equal spectral coefficients.

(2) The orbits of the structure group G(J ) consist of all elements with equal spectral signature.

Proof. Any automorphism maps (primitive) idempotents to (primitive) idempotents and fixes
1J , whence it maps Jordan frames to Jordan frames. Thus, if x =

∑r
i=1 λici for a Jordan

frame (ci)
r
i=1, it follows that for h ∈ Aut0(J )

h(x) =
r∑

i=1

λih(ci),

and (h(ci))
r
i=1 is again a Jordan frame, so that x, h(x) have the same spectral coefficients (λi)

r
i=1.
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Conversely, if x, y have the same spectral coefficients (λi)
r
i=1, then

x =
r∑

i=1

λici, y =
r∑

i=1

λic
′
i

for Jordan frames (ci)
r
i=1 and (c′i)

r
i=1. Thus, by point (5) of Proposition 4.5, there is a h ∈

Aut0(J ) with h(ci) = c′i and hence, h(x) = y. This shows the first statement.
Concerning the second statement, we define the following subsets of J :

Σm := {x ∈ J | m spectral coefficients of x are ̸= 0},
Σ≤m := {x ∈ J | at most m spectral coefficients of x are ̸= 0},
Σn+,n− := {x ∈ J | x has spectral signature (n+, n−)}.

Evidently,

Σm =
⋃̇

n++n−=m
Σn+,n− . (4.9)

Moreover, by the first assertion, all these sets are Aut0(J )-invariant.
There are continuous (in fact, polynomial) functions ak : J → R such that

f(x, λ) = λr + λr−1ar−1(x) + · · ·+ a0(x) (4.10)

is the minimal polynomial of all generic x ∈ J , i.e., elements with pairwise distinct spectral
coefficients λi(x) [30, Proposition II.2.1]. If x =

∑
i λi(x)ci is the spectral decomposition of x,

then
∏

i(x−λi(x)x) = 0 by equation (4.5), and as the roots λi(x) are pairwise distinct, it follows
that

f(x, λ) =

r∏
i=1

(λ− λi(x)), (4.11)

and as generic x’s are dense in J [30, Proposition II.2.1], it follows that equation (4.11) holds for
any x ∈ J . Then Σ≤m are those elements where λ = 0 is a root of f(x, ·) of multiplicity ≥ r−m;
that is,

Σ≤m = {x ∈ J | a0(x) = · · · = ar−m−1(x) = 0} ⊂ J . (4.12)

As the spectral coefficients of x are unchanged under the automorphism group, equation (4.10)
and equation (4.11) imply

ak(h · x) = ak(x), x ∈ J , h ∈ Aut0(J ). (4.13)

We assert that Σ≤m is invariant under G(J ). For this, fix a Jordan frame (ci)
r
i=1 and

let x = λaca ∈ c∩Σm, using the index summation convention from Lemma 4.6. Define the map

Φx : Aut0(J )× Rm −→ G(J ) · x, (h, (ti)) 7→ h · exp(ltici) · x.

Since lkticix = tkaλaca by equation (4.5), it follows that

Φx(h, (ti)) = h · exp(ltici) · x = h ·
(
etaλaca

)
, (4.14)

and as etaλaca ∈ Σm, the Aut0(J )-invariance of Σm implies that Im(Φx) ⊂ Σm. Moreover, it
follows that the image of the differential d(e,0)Φx is

Im d(e,0)Φx = span{ca} ⊕ Der0(J ) · x
(4.8)
⊂ g(J ) · x = Tx(G(J ) · x).
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In fact, equation (4.8) implies that Im d(e,0)Φx = Tx(G(J ) · x) if x = λaca ∈ c is generic in Σm,
that is, if λa ̸= λb for all a ̸= b.

This implies that for x ∈ c ∩ Σm generic, there is an open neighborhood U ⊂ G(J ) of the
identity such that

U · x ⊂ Im(Φx) ⊂ Σm.

Thus, for X ∈ g(J ) and x ∈ c ∩ Σm generic, equation (4.12) implies

ak(exp(tX) · x) = 0, k = 0, . . . , r −m− 1, (4.15)

for |t| small enough such that exp(tX) ∈ U . As all ak are polynomials, the expressions in
equation (4.15) are real analytic in t, whence their vanishing for |t| small implies that they
vanish for all t ∈ R, in particular for t = 1. That is, we conclude that

ak(exp(X) · x) = 0, k = 0, . . . , r −m− 1, X ∈ g(J ) (4.16)

for x ∈ c ∩ Σm generic, and taking the closure, it follows that equation (4.16) holds for
all x ∈ c ∩ Σ≤m. Moreover, by the first part, each x ∈ Σ≤m can be written as x = h · x̃
for x̃ ∈ c ∩ Σ≤m and h ∈ Aut0(J ). Thus, it holds

ak(exp(X) · x) = ak(h ·Adh−1(X)x̃)
(4.13)
= ak(Adh−1(X) · x̃) (4.16)

= 0,

so that equation (4.16) holds for all x ∈ Σ≤m and X ∈ g(J ). Thus, by equation (4.12) it follows
that

exp(g(J )) · Σ≤m ⊂ Σ≤m,

and as the connected group G(J ) is generated by exp(g(J )), the asserted G(J )-invariance
of Σ≤m follows.

Since Σm = Σ≤m\Σ≤m−1 is the difference of two G(J )-invariant sets, it follows that Σm is
G(J )-invariant as well.

Next, we assert that Σn+,n− ⊂ Σm is relatively closed. For if (xk)k∈N ∈ Σn+,n− converges
to x0 ∈ Σm, then, fixing a Jordan frame (ci)

r
i=1, we find hk ∈ Aut0(J ) such that

yk := hk · xk =
∑
a

λa,kca, λ1,k ≥ · · · ≥ λm,k.

Since yk ∈ Σn+,n− as well, it follows that the signs of 0 ̸= λa,k are equal for all k. As Aut0(J )
is compact, we may pass to a subsequence to assume that hk → h0, whence yk → h0x0, i.e.,

h0x0 =
∑
a

λa,0ca, λa,0 = lim
k→∞

λa,k.

Since x0 and hence h0x0 ∈ Σm, it follows that λa,0 ̸= 0 for all a, whence λa,0 has the same sign
as all λa,k, so that h0x0 ∈ Σn+,n− , i.e., x0 ∈ Σn+,n− .

Thus, equation (4.9) is the disjoint decomposition of Σm into finitely many relatively closed
subsets, and since G(J ) and hence all orbits are connected, it follows that each G(J )-orbit must
be contained in some Σn+,n− .

On the other hand, as elements with equal spectral coefficients lie in the same Aut0(J )-orbit,
equation (4.14) immediately implies that G(J ) acts transitively on Σn+,n− , which completes the
proof. ■
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For a positive Jordan algebra J we identify J and J ⋆ by the isomorphism

♭ : J −→ J ⋆, x 7−→ x♭ := τ(x, ·),
#: J ⋆ −→ J , # := ♭−1.

By the spectral theorem (cf. point (4) of Proposition 4.5), for each ξ ∈ J ⋆ there is a Jordan
frame (ci)

r
i=1 on J such that

ξ# = λici, and ξ = λic
♭
i,

and we define the spectral coefficients (λi)i and the spectral signature (n+, n−) of ξ to be the
spectral coefficients and signature of ξ#. We let

On+,n− ⊂ J ⋆

be the set of elements of spectral signature (n+, n−). Furthermore, we define the dual of τ to
be the scalar product on J ⋆ given by

τ ♭(η1, η2) := τ
(
η#1 , η#2

)
or τ ♭

(
x♭1, x

♭
2

)
:= τ(x1, x2).

For x, y ∈ J and ξ ∈ J ⋆, we have (l∗xξ)(y) = ξ(lxy) = τ
(
ξ#, lxy

)
= τ

(
lxξ

#, y
)
=

(
lxξ

#
)♭
(y),

so that

l∗xξ =
(
lxξ

#
)♭
. (4.17)

Therefore, by the definition of the dual action, it follows that

Aut0(J ) · ξ =
(
Aut0(J ) · ξ#

)♭
, G(J ) · ξ =

(
G(J ) · ξ#

)♭
, (4.18)

so that, by Theorem 4.7, we obtain that the orbits of the action of G(J ) on J ⋆ are the
sets On+,n− .

The open cone of squares in J is

ΩJ := Int
{
x2 | x ∈ J

}
.

Looking at the spectral decomposition in equation (4.7), it follows that x ∈ ΩJ iff all its spectral
coefficients are positive iff lx is positive definite, and the latter description shows that ΩJ is
indeed a convex cone; in fact, it easily follows from this characterization that

ΩJ = Or,0 = g(J ) · 1J , ΩJ =
⋃̇

n+≥0
On+,0. (4.19)

Theorem 4.8. Let J be a positive, simple Jordan algebra with structure group G(J ) ⊂ Gl(J ).
Then ξ ∈ J ⋆ is mJ -regular iff the spectral coefficients (λi) of ξ satisfy:

λa + λb ̸= 0 whenever λa, λb ̸= 0. (4.20)

In particular, the G(J )-orbit On+,n− is mJ -regular iff n+ = 0 or n− = 0, i.e., iff it is contained
in ΩJ or −ΩJ .

Proof. Let x := ξ# ∈ J . By equation (4.18), Aut0(J ) · ξ ⊂ J · ξ iff Aut0(J ) · x ⊂ J · x =
lx(J ), and, recalling point (8) in Proposition 4.5, by equation (4.8) this condition is satisfied iff
equation (4.20) holds. Recalling Proposition 4.3, the first statement follows.

If n+, n− > 0, then evidently, On+,n− contains elements two of whose spectral coefficients
satisfy λa = −λb ̸= 0, so that On+,n− is not mJ -regular.

On the other hand, on On+,0 (O0,n− , respectively) λa, λb > 0 (< 0, respectively) so that equa-
tion (4.20) holds; whence On+,0 and O0,n− are the only mJ -regular orbits, and by equation (4.19)
these are the orbits contained in Ω̄J or −Ω̄J , respectively. ■
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Let us now describe the pseudo-Riemannian metric G on Oreg
mJ . Take ξ ∈ J ⋆ with spectral

decomposition

ξ = λac
♭
a ∈ J ⋆ ⇒ x := ξ# = λaca ∈ J (4.21)

for some Jordan frame (ci)
r
i=1, and assume it satisfies equation (4.20). Then, it holds

TξO = g(J ) · ξ = (g(J ) · x)♭ (4.8)
=

⊕
a,i

J ♭
ai,

and we have the following Proposition.

Proposition 4.9. Let ξ = λac
♭
a ∈ J ⋆ be as above. Then, it holds

Gξ =
∑
a,i

2

λa + λi
τ ♭|J ♭

ai
, (4.22)

which is equivalent to

Gξ

(
x♭ai, y

♭
bj

)
=


2

λa + λi
τ ♭
(
x♭ai, y

♭
ai

)
if (a, i) = (b, j),

0 else.

Proof. For xij ∈ Jij , we have

l∗xij
(ξ)

(4.17)
=

(
lxijξ

#
)♭

=
1

2
(λi + λj)x

♭
ij .

Therefore, evaluating both sides of equation (3.8) gives us

Gξ(l
∗
xai

(ξ), l∗ybj (ξ)) =
1

4
(λa + λi)(λb + λj)Gξ

(
x♭ai, y

♭
bj

)
Gξ(l

∗
xai

(ξ), l∗ybj (ξ)) = ξ({xai, ybj}) = τ
(
ξ#, {xai, ybj}

)
= τ({ξ#, xai}, ybj)

(4.21)
=

1

2
(λa + λi)τ(xai, ybj).

Since both equations must be equal, (4.22) follows as the Peirce decomposition J =
⊕

ij Jij is
τ -orthogonal. ■

Remark 4.10.

(1) Comparing the description of the regular points in O in Theorem 4.8 and equation (4.22),
it follows that Gξ has a pole of order 1 on O\Oreg

mJ .

(2) As Gξ is positive or negative definite on J ♭
aa, depending on the sign of λa ̸= 0, it follows

that Gξ is indefinite at any regular point of spectral signature (n+, n−) with n+, n− > 0.

That is, G on O is definite (and hence defines a Riemannian metric) iff O = G(J ) · ξ is
a regular orbit, iff O ⊂ ΩJ is contained in the closure of the cone of squares (G > 0) or
O ⊂ −ΩJ (G < 0).

(3) It is also evident from the description of regular points in Theorem 4.8 that for a non-
regular orbit On+,n− with n+, n− > 0 the regular part

(
On+,n−

)reg
mJ

is not path connected.

(4) Note that the Riemannian metric G on On+,0 (and, similarly, −G on O0,n−) is not complete.
Namely, for t > 0, the curve

α(t) := t2(c1 + · · ·+ cn+)
♭ ∈ On+,0

for a Jordan frame (ci)
r
i=1 has constant speed with respect to G because

Gα(t)(α̇, α̇) =

n+∑
a=1

1

t2
τ(2tca, 2tca) = 4

n+∑
a=1

τ(ca, ca).

However, α cannot be extended in On+,0 at t = 0.
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4.3 Examples

We shall now describe the metric G for the standard examples of positive Jordan algebras.

4.4 The Fisher–Rao metric for finite sample spaces

We regard J := Rn as a positive Jordan algebra whose algebraic operations are defined in
a component-wise way. Then, it is not difficult to see that ΩJ can be identified with the first
orthant Rn

+ ⊂ Rn ∼= J ⋆. The metric Gξ at ξ = (ξ1, . . . , ξn) ∈ ΩJ is given by

Gξ(u, v) =
∑
i

1

ξi
uivi, u = (ui)

n
i=1, v = (vi)

n
i=1 ∈ Rn.

When interpreting ΩJ as the set of positive finite measures on Xn = {1, . . . , n}, it is clear that G
is such its pullback to the submanifold of strictly positive probability distributions on Xn (i.e.,
open interior of the unit simplex inside Rn

+) coincides with the Fisher–Rao metric tensor which
naturally occurs in classical information geometry [2, 6]. As partially noted in [22, 23], this
instance shows that we may look at the non-normalized Fisher–Rao metric tensor on ΩJ = Rn

+

as the analogue of the homogeneous symplectic form on co-adjoint orbits in the case of Lie
algebras.

4.5 The Jordan algebras M sa
n (K), K = R,C,H

Let K denote either the real, complex or quaternionic numbers, and we define the Jordan algebra
of self-adjoint matrices

M sa
n (K) := {A ∈ Kn×n | A = A∗}, {A,B} :=

1

2
(AB +BA).

For convenience, we replace τ from equation (4.3) by the associative inner product

τ̂(A,B) := Tr(AB),

so that τ and τ̂ only differ by the multiplicative constant 1
n dimRM sa

n (K).
Let Eij ∈ Kn×n denote the matrix with a 1 in the (i, j)-entry. Then {E11, . . . , Enn} is

a Jordan frame of M sa
n (K), and the remaining Pierce spaces with respect to this frame are given

as

(M sa
n (K))ij = {zEij + z̄Eji | z ∈ K}, i < j.

For K = R,C and H, the automorphism group of M sa
n (K) is SO(n), U(n) and Sp(n), respectively,

acting on M sa
n (K) by conjugation. Thus, in particular, each A ∈ M sa

n (K) is diagonalizable by an
element in the automorphism group, so that the spectral coefficients are the eigenvalues of A.
Thus, by Proposition 4.9, for ξ = λaE

♭
aa ∈ (M sa

n (K))⋆ the metric Gξ reads

Gξ

(
zE♭

ai, wE
♭
bj

)
=


2

λa + λi
(zw̄ + wz̄) if (a, i) = (b, j),

0 else.

Moreover, because of Proposition 3.3, it follows that G is preserved by the automorphism group
of M sa

n (K).
As already mentioned in the introduction, and in accordance with the results put forward

in [22, 23], an interesting link between Jordan algebras and quantum information geometry
appears when K = C. In this case, we may identify M sa

n (C) with the Jordan algebra of self-
adjoint observables of a finite-level quantum system with Hilbert space H ∼= Cn. Then, if
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we focus on the mJ -regular orbit ΩJ of faithful, non-normalized quantum states, which can
be identified with the dual of the orbit of invertible positive matrices in M sa

n (C), the met-
ric tensor G is such that its pullback to the submanifold of faithful quantum states, deter-
mined by the condition Tr(A) = 1, coincides with the so-called Bures–Helstrom metric tensor
[9, 25, 26, 36, 37, 38, 39, 68, 69, 70, 77]. Analogously, if we focus on the mJ -regular orbit
through non-normalized pure states, which are identified with rank-one matrices in M sa

n (C), the
metric tensor G is such that its pullback to the submanifold of pure states, determined by the
condition Tr(A) = 1, is a multiple of the Fubini–Study metric tensor, essentially because of its
unitary invariance. Accordingly, and in analogy with the Fisher–Rao metric tensor seen before,
we may think of the non-normalized version of the Bures–Helstrom metric tensor and of the
Fubini–Study metric tensor as the analogue of the Kostant–Kirillov–Souriau symplectic form in
the case of the Jordan algebra M sa

n (C).

4.6 The spin-factor Jordan algebra J Spin(n)

Denoting the standard inner product of Rn by ⟨·, ·⟩, we let

J Spin(n) := Rn+1 = R1⊕ Rn, {x, y} := ⟨x, y⟩1, x, y ∈ Rn,

and where 1 is the identity element of J Spin(n). An associative inner product is given by

τ̂ |Rn = ⟨·, ·⟩, τ̂(1,1) := 1, τ̂(1,Rn) = 0.

The automorphism group is SO(n), acting on Rn and fixing 1. Every Jordan frame is given by{
1

2
(1+ e0),

1

2
(1− e0)

}
for a fixed unit vector e0 ∈ Rn, and the Peirce space complementary to the Jordan frame is

J Spin(n)12 := e⊥0 .

The two spectral coefficients of an element X = t1+ x are

λ1 =
1

2
(t+ ∥x∥), λ2 =

1

2
(t− ∥x∥),

where ∥ · ∥ denotes the norm on Rn induced by ⟨·, ·⟩. Therefore, ξ ∈ J Spin(n)⋆ is regular
iff 0 ̸= λ1 + λ2 = τ̂ ♭

(
ξ,1♭

)
. If

ξ = t01
♭ + s0e

♭
0 ∈ J Spin(n)⋆, t0 ̸= 0

is regular, where e0 ∈ Rn is a unit vector, then the tangent vectors X1, X2 ∈ TξO are of the
form

Xi = ti1
♭ + sie

♭
0 + x♭i ,

where xi ∈ e⊥0 , and where t0 = ±s0 ⇒ ti = ±si. The spectral coefficients of ξ are λ1 =
1
2(t0+s0)

and λ2 =
1
2(t0 − s0), and

Xi = (ti + si)
1

2
(1+ e0)

♭ + (ti − si)
1

2
(1− e0)

♭ + x♭i.

Therefore,

Gξ(X1, X2) =
2

t0 + s0
(t1 + s1)(t2 + s2) +

2

t0 − s0
(t1 − s1)(t2 − s2) +

2

t0
⟨x1, x2⟩.

This metric is positive definite if t0 ≥ |s0| and negative definite if t0 ≤ −|s0|, as predicted by
Proposition 4.9.
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Remark 4.11. According to the classification given in [30, Theorem V.3.7], the first two classes
of examples discussed above give a complete list of simple, positive Jordan algebras up to the
Albert algebra, a 27-dimensional simple Jordan algebra of rank 3. Its automorphism group is F4

and the structure algebra is of type E6.

While it would be possible but elaborate to calculate the regular points and the inner prod-
uct G on the tangent to the orbit at a regular point, our results in Theorem 4.8 and Proposi-
tion 4.9, allow understanding the structure without these explicit calculations.

4.7 Non-simple, semisimple positive Jordan algebras

By point (1) of Proposition 4.5, each positive, semisimple Jordan algebra admits a decomposi-
tion J = J1 ⊕ · · · ⊕ Jk into positive simple Jordan algebras, so that both the automorphism
and the structure group of J are the direct sum of the automorphism and structure group of
the simple factors Ji, respectively. Then, applying Theorems 4.7 and 4.8, and Proposition 4.9,
it follows that the G(J )-orbits are of the form

O1
n1
+,n1

−
× · · · × Ok

nk
+,nk

−
⊂ J ⋆ = J ⋆

1 ⊕ · · · ⊕ J ⋆
k ,

where Oi
ni
+,ni

−
⊂ J ⋆

i are G(Ji)-orbits. In particular, such an orbit is regular iff ni
+n

i
− = 0 for

all i, and the metric G on the regular part of this orbit is given by (4.22).

5 Discussion

As mentioned in Section 1, the mathematics of Jordan algebras has been intensively studied,
and we want to discuss here where our investigation place itself in this context.

First of all, it is clear that our construction is highly influenced and inspired by Kirillov’s the-
ory, and the relation between Jordan algebras and Kirillov’s theory has been already investigated
in the literature [40, 41, 42]. However, the approaches and constructions already available are
different from ours, both conceptually and in terms of mathematical structures. For instance, in
the works mentioned above, the emphasis is on the study of nilpotent coadjoint orbits of convex
types, while we do not study the coadjoint orbits of the structure group G(J ), rather we try
to develop an analogue of coadjoint orbits for a Jordan algebra. In order to do so, it turns out
we need to rely on the structure group G(J ) and on (some of) its homogeneous spaces. A clear
departure point from ordinary Kirillov theory is then the fact that the orbits we find do not
possess a natural symplectic structure, but rather a pseudo-Riemannian one. The shift from an
antisymmetric tensor to a symmetric one is clearly related to the fact that we develop Kirillov’s
theory for Jordan algebras, which have a symmetric product. Moreover, as commented in Sec-
tions 1 and 4.3, a direct output of our investigation is the fact that some relevant Riemannian
structures that naturally arise in the context of Classical and quantum information geometry
(namely, the Fisher–Rao metric tensor and the Bures–Helstrom metric tensor) can be thought of
as the Jordan-algebraic analogue of the natural homogeneous symplectic form on the co-adjoint
orbits of a Lie group.

Other important avenues of research around the mathematics of Jordan algebras concern
the relation between symmetric spaces/cones/domains and Jordan algebras, as well as the dif-
ferential geometric structures related with the algebraic structure of Jordan algebras [13, 14, 18,
30, 52, 78].

In all these investigations, the geometrical objects are subsets of a given Jordan algebra J ,
while we consider positive linear functionals on J . This change of perspective is dictated by
the role Jordan algebras play in information geometry, where the relevant objects live in the
dual space of J (e.g., classical probability distributions, quantum states). It is true that it is
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possible to identify J with its dual in finite dimensions, and we exploit this technicality in our
proofs, but the focus of our approach is conceptually different from the previous ones, and this
difference is particularly relevant with respect to possible generalizations to infinite dimensions
(a task that we plan to address in the future).

Again in relation with the above-mentioned references, the symmetric cones in real Hilbert
spaces that turn out to be in one-to-one correspondence with formally real (Euclidean) Jordan
algebras, in the sense that every such symmetric cone can be realized as the open cone ΩJ of
invertible positive elements of a suitable Jordan algebra J , are given from the onset. From
our point of view, the open cone ΩJ is not an a priori datum of the problem, but it appears
because it is diffeomorphic to an integral manifold of the Jordan distribution HJ . Therefore,
ΩJ is a byproduct of our investigation of the integrability properties of the Jordan distribution
canonically associated with the Jordan algebra product. Moreover, the symmetric cones are also
naturally endowed with a Riemannian structure g, which is invariant under the action of the
symmetry group G(J ) of the cone itself, while the Riemannian structure we obtain is invariant
only under the subgroup of G(J ) composed by automorphisms of J . This instance follows
from the fact that we obtain the Riemannian structure by implementing a symmetric analogue
of Kirillov theory, and not by symmetry considerations. In particular, in the case of the real
associative Jordan algebra Rn, the G(J )-invariant Riemannian metric tensor g on ΩJ = Rn

+

can be written as [18, Theorem 2.3.19]

g =
n∑

j=1

dpj ⊗ dpj

(pj)2
,

where {pj}j=1,...,n is a Cartesian coordinate system adapted to ΩJ in the sense that elements
in ΩJ have strictly positive values of the coordinates. This Riemannian metric tensor is different
from the Fisher–Rao metric tensor appearing in classical information geometry [6]. However,
as shown in Section 4.3 (in accordance with [23]), the Riemannian structure emerging from our
construction is precisely the Fisher–Rao metric tensor. Moreover, the G(J ) invariance of g
implies it is invariant with respect to dilations also when J = Bsa(Cn) ∼= M sa

n (C), so that g
can not be the Bures–Helstrom metric tensor appearing in quantum information geometry [25],
while, again referring to Section 4.3, the Riemannian metric tensor we obtain reduces to the
Bures–Helstrom metric tensor when J = Bsa(Cn) ∼= M sa

n (C).
Another relevant point to stress is that our construction relies entirely on the algebraic Jor-

dan product. This detail contributes to further differentiate our work from previous ones, where
part of the geometrical structures associated with Jordan algebras necessarily involve the so-
called Jordan triple product, a trilinear map that exists in every Jordan algebra (and also in
more general objects known as Jordan triple systems). For instance, the G(J )-invariant Rie-
mannian metric tensor discussed above is defined in terms of the Jordan triple product of J
[18, Theorem 2.3.19], while our Riemannian metric tensor only requires the Jordan product.
Also, the Jordan triple product induces a natural Lie triple system that leads to a curvature-like
tensor [13], and again, this differential geometric object makes use of the Jordan product only
indirectly, highlighting the difference with our approach. At this point, it is worth noting that we
plan to address the role of the Jordan triple product and its associated Lie triple system in infor-
mation geometry because we believe they are connected with the so-called Amari–Cencov tensor
in the classical case, and with a non-symmetric generalization of that tensor in the quantum
case.

Therefore, while and perhaps because our approach is partly extrinsically motivated by classi-
cal and quantum information geometry, and partly intrinsically by developing an orbit method-
like theory, our constructions and results are different from previous ones and, taken together,
they yield a fuller picture of the structure of Jordan algebras.
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[6] Ay N., Jost J., Lê H.V., Schwachhöfer L., Information geometry, Ergeb. Math. Grenzgeb. (3), Vol. 64,
Springer, Cham, 2017.

[7] Baez J.C., Getting to the bottom of Noether’s theorem, in The Philosophy and Physics of Noether’s Theo-
rems: a Centenary Volume, Cambridge University Press, Cambridge, 2022, 66–99, arXiv:2006.14741.

[8] Bauer M., Bruveris M., Michor P.W., Uniqueness of the Fisher–Rao metric on the space of smooth densities,
Bull. Lond. Math. Soc. 48 (2016), 499–506, arXiv:1411.5577.

[9] Bengtsson I., Zyczkowski K., Geometry of quantum states: an introduction to quantum entanglement,
Cambridge University Press, Cambridge, 2006.

[10] Berthier M., Geometry of color perception. Part 2: perceived colors from real quantum states and Hering’s
rebit, J. Math. Neurosci. 10 (2020), 14, 25 pages, arXiv:hal-02342456.

[11] Berthier M., Prencipe N., Provenzi E., A quantum information-based refoundation of color perception
concepts, SIAM J. Imaging Sci. 15 (2022), 1944–1976.

[12] Berthier M., Provenzi E., Quantum measurement and colour perception: theory and applications, Proc. A.
478 (2022), 20210508, 25 pages, arXiv:hal-03268152.

[13] Bertram W., The geometry of Jordan and Lie structures, Lecture Notes in Math., Vol. 1754, Springer, Berlin,
2000.

[14] BertramW., Neeb K.-H., Projective completions of Jordan pairs, Part II: Manifold structures and symmetric
spaces, Geom. Dedicata 112 (2005), 73–113, arXiv:math.GR/0401236.

[15] Bures D., An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite
w∗-algebras, Trans. Amer. Math. Soc. 135 (1969), 199–212.
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