Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 077, 36 pages      arXiv:2303.17677      https://doi.org/10.3842/SIGMA.2023.077

The Higher-Rank Askey-Wilson Algebra and Its Braid Group Automorphisms

Nicolas Crampé a, Luc Frappat b, Loïc Poulain d'Andecy c and Eric Ragoucy b
a)  Institut Denis-Poisson CNRS/UMR 7013 - Université de Tours - Université d'Orléans, Parc de Grandmont, 37200 Tours, France
b)  Laboratoire d'Annecy-le-Vieux de Physique Théorique LAPTh, Université Savoie Mont Blanc, CNRS, F-74000 Annecy, France
c)  Laboratoire de mathématiques de Reims UMR 9008, Université de Reims Champagne-Ardenne, Moulin de la Housse BP 1039, 51100 Reims, France

Received April 12, 2023, in final form October 10, 2023; Published online October 18, 2023

Abstract
We propose a definition by generators and relations of the rank $n-2$ Askey-Wilson algebra $\mathfrak{aw}(n)$ for any integer $n$, generalising the known presentation for the usual case $n=3$. The generators are indexed by connected subsets of $\{1,\dots,n\}$ and the simple and rather small set of defining relations is directly inspired from the known case of $n=3$. Our first main result is to prove the existence of automorphisms of $\mathfrak{aw}(n)$ satisfying the relations of the braid group on $n+1$ strands. We also show the existence of coproduct maps relating the algebras for different values of $n$. An immediate consequence of our approach is that the Askey-Wilson algebra defined here surjects onto the algebra generated by the intermediate Casimir elements in the $n$-fold tensor product of the quantum group ${\rm U}_q(\mathfrak{sl}_2)$ or, equivalently, onto the Kauffman bracket skein algebra of the $(n+1)$-punctured sphere. We also obtain a family of central elements of the Askey-Wilson algebras which are shown, as a direct by-product of our construction, to be sent to $0$ in the realisation in the $n$-fold tensor product of ${\rm U}_q(\mathfrak{sl}_2)$, thereby producing a large number of relations for the algebra generated by the intermediate Casimir elements.

Key words: Askey-Wilson algebra; braid group.

pdf (684 kb)   tex (43 kb)  

References

  1. Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984.
  2. Chen H., On skein algebras of planar surfaces, arXiv:2206.07856.
  3. Cooke J., Lacabanne A., Higher rank Askey-Wilson algebras as skein algebras, arXiv:2205.04414.
  4. Crampé N., Frappat L., Gaboriaud J., Poulain d'Andecy L., Ragoucy E., Vinet L., The Askey-Wilson algebra and its avatars, J. Phys. A 54 (2021), 063001, 32 pages, arXiv:2009.14815.
  5. Crampé N., Frappat L., Ragoucy E., Representations of the rank two Racah algebra and orthogonal multivariate polynomials, Linear Algebra Appl. 664 (2023), 165-215, arXiv:2206.01031.
  6. Crampé N., Gaboriaud J., Poulain d'Andecy L., Vinet L., Racah algebras, the centralizer $Z_n(\mathfrak{sl}_2)$ and its Hilbert-Poincaré series, Ann. Henri Poincaré 23 (2022), 2657-2682, arXiv:2105.01086.
  7. Crampé N., Gaboriaud J., Vinet L., Zaimi M., Revisiting the Askey-Wilson algebra with the universal $R$-matrix of ${\rm U}_q(\mathfrak{sl}_2)$, J. Phys. A 53 (2020), 05LT01, 10 pages, arXiv:1908.04806.
  8. Crampé N., Poulain d'Andecy L., Vinet L., Zaimi M., Askey-Wilson braid algebra and centralizer of ${\rm U}_q(\mathfrak{sl}_2)$, Ann. Henri Poincaré 24 (2023), 1897-1922, arXiv:2206.11150.
  9. Crampé N., Vinet L., Zaimi M., Temperley-Lieb, Birman-Murakami-Wenzl and Askey-Wilson algebras and other centralizers of ${\rm U}_q(\mathfrak{sl}_2)$, Ann. Henri Poincaré 22 (2021), 3499-3528, arXiv:2008.04905.
  10. De Bie H., De Clercq H., The $q$-Bannai-Ito algebra and multivariate $(-q)$-Racah and Bannai-Ito polynomials, J. Lond. Math. Soc. 103 (2021), 71-126, arXiv:1902.07883.
  11. De Bie H., De Clercq H., van de Vijver W., The higher rank $q$-deformed Bannai-Ito and Askey-Wilson algebra, Comm. Math. Phys. 374 (2020), 277-316, arXiv:1805.06642.
  12. De Clercq H., Higher rank relations for the Askey-Wilson and $q$-Bannai-Ito algebra, SIGMA 15 (2019), 099, 32 pages, arXiv:1908.11654.
  13. Genest V.X., Iliev P., Vinet L., Coupling coefficients of $\mathfrak{su}_q(1,1)$ and multivariate $q$-Racah polynomials, Nuclear Phys. B 927 (2018), 97-123, arXiv:1702.04626.
  14. Genest V.X., Vinet L., Zhedanov A., Superintegrability in two dimensions and the Racah-Wilson algebra, Lett. Math. Phys. 104 (2014), 931-952, arXiv:1307.5539.
  15. Geronimo J.S., Iliev P., Multivariable Askey-Wilson function and bispectrality, Ramanujan J. 24 (2011), 273-287.
  16. Granovskii Y.I., Zhedanov A.S., Nature of the symmetry group of the $6j$-symbol, J. Exp. Theor. Phys 67 (1988), 1982-1985.
  17. Granovskii Y.I., Zhedanov A.S., Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra $\mathfrak{sl}_q(2)$, J. Group Theoret. Methods Phys. 1 (1993), 161-171, arXiv:hep-th/9304138.
  18. Groenevelt W., A quantum algebra approach to multivariate Askey-Wilson polynomials, Int. Math. Res. Not. 2021 (2021), 3224-3266, arXiv:1809.04327.
  19. Groenevelt W., Wagenaar C., An Askey-Wilson algebra of rank 2, SIGMA 19 (2023), 008, 35 pages, arXiv:2206.03986.
  20. Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
  21. Huang H.-W., An embedding of the universal Askey-Wilson algebra into ${\rm U}_q(\mathfrak{sl}_2)\otimes {\rm U}_q(\mathfrak{sl}_2)\otimes {\rm U}_q(\mathfrak{sl}_2)$, Nuclear Phys. B 922 (2017), 401-434, arXiv:1611.02130.
  22. Iliev P., Bispectral commuting difference operators for multivariable Askey-Wilson polynomials, Trans. Amer. Math. Soc. 363 (2011), 1577-1598, arXiv:0801.4939.
  23. Kalnins E.G., Kress J.M., Miller Jr. W., Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory, J. Math. Phys. 46 (2005), 053509, 28 pages.
  24. Kassel C., Turaev V., Braid groups, Grad. Texts in Math., Vol. 247, Springer, New York, 2008.
  25. Leonard D.A., Orthogonal polynomials, duality and association schemes, SIAM J. Math. Anal. 13 (1982), 656-663.
  26. Post S., Models of quadratic algebras generated by superintegrable systems in 2D, SIGMA 7 (2011), 036, 20 pages, arXiv:1104.0734.
  27. Post S., Walter A., A higher rank extension of the Askey-Wilson algebra, arXiv:1705.01860.
  28. Terwilliger P., The universal Askey-Wilson algebra, SIGMA 7 (2011), 069, 24 pages, arXiv:1104.2813.
  29. Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
  30. Vermaseren J.A.M., New features of FORM, source: https://github.com/vermaseren/form, arXiv:math-ph/0010025.
  31. Zhedanov A.S., ''Hidden symmetry'' of Askey-Wilson polynomials, Theoret. and Math. Phys. 89 (1991), 1146-1157.

Previous article  Next article  Contents of Volume 19 (2023)