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Abstract. We propose a definition by generators and relations of the rank n − 2 Askey–
Wilson algebra aw(n) for any integer n, generalising the known presentation for the usual
case n = 3. The generators are indexed by connected subsets of {1, . . . , n} and the simple
and rather small set of defining relations is directly inspired from the known case of n = 3.
Our first main result is to prove the existence of automorphisms of aw(n) satisfying the
relations of the braid group on n+1 strands. We also show the existence of coproduct maps
relating the algebras for different values of n. An immediate consequence of our approach
is that the Askey–Wilson algebra defined here surjects onto the algebra generated by the
intermediate Casimir elements in the n-fold tensor product of the quantum group Uq(sl2)
or, equivalently, onto the Kauffman bracket skein algebra of the (n + 1)-punctured sphere.
We also obtain a family of central elements of the Askey–Wilson algebras which are shown,
as a direct by-product of our construction, to be sent to 0 in the realisation in the n-fold
tensor product of Uq(sl2), thereby producing a large number of relations for the algebra
generated by the intermediate Casimir elements.
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1 Introduction

The (usual) Askey–Wilson algebra, denoted in this paper aw(3), originally appeared in [31] to
provide an algebraic underpinning for the eponym polynomials. Indeed, these polynomials are
solutions of a bispectral problem, i.e., they satisfy a recurrence and a difference relation. By
identifying the algebraic relations the recurrence operator and the difference operator obey, the
relations of aw(3) have been discovered. Another occurrence of this algebra appears in the Racah
problem which consists in studying the different recouplings of three irreducible representations
of Uq(sl2). This leads to an algebraic interpretation of the 6j-symbols of Uq(sl2), that appears
to be intimately linked to the Askey–Wilson polynomials [16, 17]. This is based on the fact that
the intermediate Casimir elements of Uq(sl2)

⊗3 verify the Askey–Wilson relations of aw(3) [21].
This led to a new point of view on the centralisers of Uq(sl2) in tensor products of any three
possibly different spin representations [8, 9]. The Askey–Wilson algebras have subsequently
found applications in different contexts as association schemes [1, 25, 28], Leonard pairs [29],
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Kauffman bracket skein algebras [3] and symmetry of physical models [14, 23, 26]. In addition
of that, the representation theory has been studied in [20]. For more details about the Askey–
Wilson algebra aw(3), we refer to the review [4].

The incarnation of the Askey–Wilson algebra aw(3) related to Uq(sl2)
⊗3 offers a natural

path to a generalisation by considering Uq(sl2)
⊗n instead. This path has been already used in

different contexts, for example identifying the intermediate Casimir operators as symmetries of
quantum q-deformed Calogero–Gaudin superintegrable system [13]. Similarly, the incarnation
related to the Kauffman bracket skein algebra of the sphere with 4 punctures naturally suggests
to increase the number of punctures to n + 1. Fortunately, this was proved recently [3] that
the subalgebra of Uq(sl2)

⊗n generated by the intermediate Casimir elements and the Kauffman
bracket skein algebra of the sphere with n+1 punctures are isomorphic, so that these two ways
of generalisation actually coincide. Following the terminology of [4], we call the resulting algebra
the “special Askey–Wilson algebra” and denote it saw(n).

We emphasize that for n = 3, the Askey–Wilson algebra aw(3) and the special Askey–
Wilson algebra saw(3) are different. The algebra aw(3) has a simple definition in terms of
q-commutation relations for 3 generators, resulting in an algebra with a polynomial PBW basis,
while the algebra saw(3) is obtained by further quotienting out by a certain central element,
which looks slightly complicated. So this should come as no surprise that the problem of finding
an explicit algebraic description of saw(n), for any n, by generators and relations seems quite
difficult. We refer to the appendix in [3] for the case n = 4.

Due to the importance of aw(3), different attempts to generalise its definition appeared
previously for n = 4 [19, 27] or for any n [10, 11, 12] but a complete set of relations had not been
provided. The point of view in the paper is that it would be interesting to have an Askey–Wilson
algebra aw(n), which would be a genuine generalisation of aw(3), and which would have the
special algebra saw(n) as a quotient. This would provide the complete analogue for any n of the
general picture for n = 3. This would also provide the quantum analogue of the q = 1 classical
case, where we have the higher-rank Racah algebras defined in terms of simple commutation
relations, which admit as a (rather complicated) quotient the special Racah algebras describing
the diagonal centraliser in U(sl2)

⊗n, see [6]. To be interesting, the algebra aw(n) should have
a rather simple and natural definition, and should enjoy natural properties. It could be then
considered in particular as an intermediary step, interesting in its own as is aw(3), towards the
description of saw(n).

In this paper, we provide a definition of the algebra aw(n) in terms of generators and relations

satisfying the above requirements, see Definition 2.4. It possesses n(n+1)
2 generators, n + 1 of

them being central. One property of the algebras aw(n), which is our first main result, is the
existence of coproduct maps relating aw(n) to aw(n+1), and of a group of automorphisms, for
each aw(n), satisfying the relations of the braid group on n + 1 strands. The construction of
the automorphisms is done in two steps. First, we construct maps satisfying the relations of the
braid group on n strands. These maps mimic at the level of aw(n) the natural coproduct maps
and conjugation maps by the R-matrix in Uq(sl2)

⊗n. They also have natural interpretations
in the Kauffman bracket skein algebra. We indicate that an action of the braid group on 3
strands by automorphisms of aw(3) was obtained in [28]. The connection with the R-matrix
of Uq(sl2) was provided in [7]. We also show that, as for n = 3 in [28], the realisation of the
braid group on n strands as automorphisms actually factors through its quotient by the centre
for any n. Second, we note that we have a larger group of automorphisms since we supplement
the braid group on n strands with another generator realising the braid group on n+1 strands.
This additional generator has a natural interpretation in the skein algebra (since there are n+1
punctures) and seems to be new already for n = 3.

We find it remarkable that the algebra aw(n) with its relatively simple presentation is able to
retain the properties of having coproduct maps and braid group automorphisms, which may seem
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to be intrinsic properties of the quotients saw(n) realised in Uq(sl2)
⊗n. In fact, our conceptual

guiding principle for deciding how many and which relations to put in the definition of aw(n)
was the following: we put the minimal set of relations ensuring the existence of these coproduct
maps and automorphisms (and of course such that aw(3) is the known usual Askey–Wilson
algebra). This approach via this kind of universal property turns out to be quite fruitful since,
first, it results in a natural presentation of aw(n) and second it allows us to collect easily several
interesting consequences, as we discuss now.

First of all, the automorphisms and the coproduct maps allow to obtain directly many rela-
tions satisfied in aw(n) as consequences of the defining relations. We recover thus many relations
calculated for example in [3, 12, 27]. Secondly, this approach allows us to obtain without any
calculation that the algebra aw(n) indeed surjects onto the algebra in Uq(sl2)

⊗n generated by
the intermediate Casimir elements, or equivalently onto the Kauffman bracket skein algebra of
the (n+ 1)-punctured sphere.

Then in a second part of the paper, we turn to more involved consequences of the defining
relations of aw(n), namely, the existence of a large family of central elements. Here also the
coproduct maps and the automorphisms are put to full use. Indeed, we start with the known
central element of aw(3)

(
the one which is sent to 0 in the special quotient realized in Uq(sl2)

⊗3
)
,

and we obtain a family of central elements in aw(n) by applying as much as we can the coproduct
maps and the automorphisms. We are able to describe a minimal spanning set for this family of
central elements, indexed by subsets of {1, . . . , n}. On this family of central elements, the action
of the n-strands braid group automorphisms is shown to be realised simply via the permutation
action of the symmetric group on n letters. Again, as an immediate consequence of the approach
advocated here, we have that all these central elements become 0 in Uq(sl2)

⊗n. Therefore, we
get many relations satisfied by the quotient saw(n). However, it remains an open question to
decide if putting all these central elements to 0 is enough to get a presentation of saw(n). It is
actually an open question whether saw(n) is a quotient of aw(n) by a central ideal. Comparing
with the appendix of [3], we were able to check this latter property only for n = 4, but we still
do not know whether our family of central elements generate the ideal.

Other open questions also remain mainly about the uses of the higher rank Askey–Wilson
algebra. For example, a quotient of aw(n) should describe the centralisers of Uq(sl2) in tensor
products of any n possibly different spin representations, generalising the results of [8, 9] obtained
for n = 3. Further, the connection with the multivariate Askey–Wilson polynomials [15, 18, 22]
should be very fruitful. Indeed, the study of the representations of the algebra aw(n) provides
the bispectrality operators of these polynomials, generalising to the q-deformed case the known
connections between the multivariate Racah polynomials and the higher-rank Racah algebras [5].
Finally, we performed some computer aided proofs, see for instance Proposition 5.2: a conceptual
proof of it would be nice to achieve.

Organisation. We give the notations and the definition of the algebra aw(n) in Section 2
and we prove many consequences of the defining relations. The description of the group of
automorphisms realising the braid group is in Section 3 and the technical part of the proof is
postponed to Appendix A. Section 4 deals with the coproduct maps and their relations with
the automorphisms of the previous section. The central elements of aw(n) and their properties
are given in Section 5. The connections with Uq(sl2)

⊗n and with the skein algebra are given in
Section 6 while the links with the higher rank Racah algebra are found in Section 7.

2 The Askey–Wilson algebra aw(n)

In this section, we give a definition of aw(n) by generators and relations and draw some conse-
quences of this definition. The algebra aw(n) considered here is over C(q) for an indeterminate q.
It is also defined over C if we take q a non-zero complex number such that q2 ̸= 1.
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2.1 Definition

Let us define some notations and terminology on sets and subsets:

� For two subsets I, J ⊆ {1, . . . , n}, we say that I < J if all elements of I are strictly smaller
than all elements of J .

� A non-empty subset I ⊆ {1, . . . , n} is connected if it consists in a subset of consecutive
integers.

� Two disjoint connected subsets I, J ⊆ {1, . . . , n} are adjacent if their union is connected.

� A hole H between two disjoint connected subsets I1 and I2 consists in the connected subset
between I1 and I2. Visually, we have

. . . •, •, . . . , •︸ ︷︷ ︸
I1

, •, . . . , •︸ ︷︷ ︸
H

, •, . . . , •︸ ︷︷ ︸
I2

, •, . . . .

In this picture, and in all the similar pictures below, the integers (drawn as •’s) are ordered
either from left to right or from right to left (depending on the respective positions of I1
and I2 in the natural order). So such a picture does not mean that I1 < I2, it means
that I1, H, I2 are adjacent connected subsets.

� A sequence (I1, . . . , Ik) of non-empty connected subsets of {1, . . . , n} is said monotonic if
either I1 < I2 < · · · < Ik or I1 > I2 > · · · > Ik.

By direct computation, we can show the following relations, called q-Jacobi relations:[
[A,B]q, C

]
q
−

[
A, [B,C]q

]
q
=

1(
q − q−1

)2 [B, [C,A]
]
, (2.1a)

[
A, [C,B]q

]
q
−

[
C, [A,B]q

]
q
=

q + q−1

q − q−1

[
[A,C], B

]
q2
, (2.1b)[

A, [B,C]q
]
+
[
C, [A,B]q

]
+
[
B, [C,A]q

]
= 0, (2.1c)

where the q-commutator is defined by

[A,B]q =
1

q − q−1

(
qAB − q−1BA

)
= [B,A]q−1 , (2.2)

and [A,B] = AB − BA is the usual commutator. Of particular interest is the case when A
and C commute. In this case, the right-hand sides of (2.1a) and (2.1b) vanish and we have

[A,C]q = AC, [A,BC]q = [A,B]qC, [A,CB]q = C[A,B]q

that we will use without mentioning.
In the following, we consider the elements CI indexed by all the connected subsets I ⊆

{1, . . . , n}. By convention, we set

C∅ := 1. (2.3)

A notation for CI forgetting the accolades for a set will be used: if I = {i, i+1, . . . , j}, Cii+1...j

stands for CI .

Example 2.1. For n = 3, the elements CI are C1, C2, C3, C12, C23, C123 and, for n = 4, they
are C1, C2, C3, C4, C12, C23, C34, C123, C234, C1234.

If a connected subset I is written as the disjoint union of two connected subsets I1 and I2,
then CI1I2 and CI2I1 mean CI .



The Higher-Rank Askey–Wilson Algebra and Its Braid Group Automorphisms 5

Example 2.2. If I1 = {1} and I2 = {2, 3}, the notations CI1I2 and CI2I1 both mean C123.

We also want to define elements CI1I2 with a hole between I1 and I2. Let us consider I1, I2
two non-empty and disjoint connected subsets of {1, . . . , n} with a non-empty hole H between
them. Visually, we have

. . . •, •, . . . , •︸ ︷︷ ︸
I1

, •, . . . , •︸ ︷︷ ︸
H

, •, . . . , •︸ ︷︷ ︸
I2

, •, . . . ,

where the integers 1, . . . , n, (drawn as •’s) are ordered either from left to right or from right to
left (depending on the respective positions of I1 and I2 in the natural order). The element CI1I2

is defined by

CI1I2 := −[CI1H , CHI2 ]q + CI1CI2 + CHCI1HI2 . (2.4)

Sometimes a “,” in CI1,I2 is inserted for clarity.

Example 2.3. As an illustration, we have

C13 := −[C12, C23]q + C1C3 + C2C123, C236 := −[C2345, C456]q + C23C6 + C45C23456.

For n = 4, the relation (2.4) defines the elements C13, C31, C24, C42, C14, C41, C12,4, C4,12,
C1,34, C34,1.

We are ready to give a definition of the algebra aw(n) by generators and relations, using the
notations introduced above.

Definition 2.4. The algebra aw(n) is the unital associative algebra generated by the ele-
ments CI , where I is any non-empty connected subset of {1, . . . , n}, satisfying the following
relations:

� for any two connected subsets I and J ,

[CI , CJ ] = 0 if I ∩ J = ∅ or I ⊂ J ; (2.5)

� for any monotonic sequence of three adjacent non-empty connected subsets (I1, I2, I3),

CI1I2 = −[CI2I3 , CI1I3 ]q + CI1CI2 + CI3CI1I2I3 , (2.6)

where CI1I3 is defined by (2.4);

� for any monotonic sequence of four adjacent non-empty connected subsets (I1, I2, I3, I4),

CI1I4 = −[CI1I3 , CI3I4 ]q + CI1CI4 + CI3CI1I3I4 , (2.7)

where CI1I3 , CI1I4 and CI1I3I4 are defined by (2.4).

Note that in aw(n), the element CI2I1 , obtained from (2.4), is in general different from CI1I2 .
However, it is obtained by simply replacing q by q−1 in CI1I2 :

CI2I1 := −[CI1H , CHI2 ]q−1 + CI1CI2 + CHCI1HI2 .

We have used that, from our notations, we get CI1H = CHI1 and other similar equalities implying
adjacent subsets.
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Lemma 2.5. Let (I1, H, I2) be any sequence of monotonic adjacent connected subsets. In aw(n),
the elements CI1I2 and CI2I1 are connected as follows:

q−1

q + q−1
CI1I2 +

q

q + q−1
CI2I1 = −CHI2CI1H + CI1CI2 + CHCI1HI2 , (2.8a)

q

q + q−1
CI1I2 +

q−1

q + q−1
CI2I1 = −CI1HCHI2 + CI1CI2 + CHCI1HI2 . (2.8b)

Proof. Replace CI1I2 and CI2I1 by their definition to get the results. ■

Example 2.6. For n = 3, the Askey–Wilson algebra aw(3) is generated by C1, C2, C3, C12, C23

and C123. Relation (2.5) proves that C1, C2, C3 and C123 are central. The defining relations (2.4)
lead to

C13 := −[C12, C23]q + C1C3 + C2C123. (2.9)

The relations (2.7) do not exist for n = 3. The ones given by (2.6) with the subsets (1, 2, 3)
or (3, 2, 1) read

C12 = −[C23, C13]q + C1C2 + C3C123, (2.10)

C23 = −[C12, C31]q + C2C3 + C1C123. (2.11)

Using the definition (2.4) of C31 and the q-Jacobi relation (2.1a), one proves that (2.11) can be
replaced by

C23 = −[C13, C12]q + C2C3 + C1C123. (2.12)

Relations (2.9), (2.10) and (2.12) are the usual defining relations of the Askey–Wilson alge-
bra aw(3) [31] (see also [4]). Let us remark that there may be a change of normalisation for
the generators used here and the ones used in the previous literature. For example, there is the
change

CI → CI

q + q−1
,

to compare with [4, 12] or CI → −CI to compare with [27]. The normalisation of this paper is
chosen so that we have (2.3): C∅ = 1. Let us also point out that there is an unusual denominator
in the definition (2.2) of the q-commutator.

2.2 Properties

It is easily shown from (2.5) that

Ci, i = 1, 2, . . . , n, C12...n are central in aw(n).

There are also other relations implied by Definition 2.4.

Lemma 2.7. In the algebra aw(n), the following relations are also satisfied:

� for any monotonic sequence of four adjacent non-empty connected subsets (I1, I2, I3, I4),
the following commutations hold:

[CI1I2 , CI1I2I4 ] = 0, [CI1I2 , CI4I2I1 ] = 0, (2.13a)

[CI3I4 , CI1I3I4 ] = 0, [CI3I4 , CI4I3I1 ] = 0,

[CI1I2I3 , CI1I3 ] = 0, [CI1I2I3 , CI3I1 ] = 0,

[CI2I3I4 , CI2I4 ] = 0, [CI2I3I4 , CI4I2 ] = 0,

[CI2I3 , CI1I4 ] = 0, [CI2I3 , CI4I1 ] = 0;
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� for any monotonic sequence of three adjacent non-empty connected subsets (I1, I2, I3),

CI1I2 = −[CI2I3 , CI1I3 ]q + CI1CI2 + CI3CI1I2I3 , (2.14a)

CI2I3 = −[CI1I3 , CI1I2 ]q + CI2CI3 + CI1CI1I2I3 , (2.14b)

CI1I3 = −[CI1I2 , CI2I3 ]q + CI1CI3 + CI2CI1I2I3 ; (2.14c)

� for any monotonic sequence of four adjacent non-empty connected subsets (I1, I2, I3, I4),

CI1I4 = −[CI1I2 , CI2I4 ]q + CI1CI4 + CI2CI1I2I4 , (2.15a)

CI2I4 = −[CI1I4 , CI1I2 ]q + CI2CI4 + CI1CI1I2I4 , (2.15b)

CI1I2 = −[CI2I4 , CI1I4 ]q + CI1CI2 + CI4CI1I2I4 , (2.15c)

CI1I4 = −[CI1I3 , CI3I4 ]q + CI1CI4 + CI3CI1I3I4 , (2.16a)

CI1I3 = −[CI3I4 , CI1I4 ]q + CI1CI3 + CI4CI1I3I4 , (2.16b)

CI3I4 = −[CI1I4 , CI1I3 ]q + CI3CI4 + CI1CI1I3I4 , (2.16c)

CI1I2I4 = −[CI3I1 , CI2I3I4 ]q + CI1CI2I4 + CI3CI1I2I3I4 , (2.17a)

CI3I1 = −[CI2I3I4 , CI1I2I4 ]q + CI3CI1 + CI2I4CI1I2I3I4 , (2.17b)

CI2I3I4 = −[CI1I2I4 , CI3I1 ]q + CI3CI2I4 + CI1CI1I2I3I4 , (2.17c)

CI1I3I4 = −[CI1I2I3 , CI4I2 ]q + CI4CI1I3 + CI2CI1I2I3I4 , (2.18a)

CI4I2 = −[CI1I3I4 , CI1I2I3 ]q + CI2CI4 + CI1I3CI1I2I3I4 , (2.18b)

CI1I2I3 = −[CI4I2 , CI1I3I4 ]q + CI2CI1I3 + CI4CI1I2I3I4 , (2.18c)

CI1I2I4 = −[CI2I3 , CI1I3I4 ]q + CI2CI1I4 + CI3CI1I2I3I4 , (2.19a)

CI1I3I4 = −[CI1I2I4 , CI2I3 ]q + CI1I4CI3 + CI2CI1I2I3I4 , (2.19b)

CI2I3 = −[CI1I3I4 , CI1I2I4 ]q + CI2CI3 + CI1I4CI1I2I3I4 . (2.19c)

Proof. To prove the relations in (2.13), replace the elements with one hole using (2.4) and
remark that all the generators appearing commute with the term without any hole using (2.5).

Relation (2.14a) is the relation (2.6) in the Definition 2.4. To prove relation (2.14b), we follow
the same steps as in Example 2.6. Relation (2.14c) is just (2.4).

Relation (2.16a) is just a copy of (2.7). To prove (2.15a), we evaluate the q-commutator by
replacing CI2I4 by its defining formula (2.4). Then we use the q-Jacobi relations (2.1a) and the
relation (2.5).

The other relations are proven similarly: (2.16b) is obtained expressing CI1I4 by (2.15a)
in the q-commutator [CI3I4 , CI1I4 ]q, while (2.15b) is deduced from (2.7) and (2.17a) is deduced
from (2.15b) (with (I1, I2, I3, I4)→(I4, I3, I2, I1)), and (2.18a) from (2.16b) (with (I1, I2, I3, I4)→
(I4, I3, I2, I1)). Relations (2.17b), (2.18b), (2.19a) and (2.19b) are deduced from (2.4).

To prove (2.19c) (resp. (2.16c), (2.15c), (2.17c), (2.18c)), we use the definition (2.4) of CI1I3I4

(resp. CI1I3 , CI2I4 , CI3I1 , CI4I2), the q-Jacobi relation and the relations just proven. ■

Remark 2.8. In Lemma 2.7, the relations are organized in clusters of three. These clusters
correspond to three equations defining a aw(3) algebra.

Lemma 2.9. In aw(n), the following relations between commutators hold, for any monotonic
sequence of four adjacent non-empty connected subsets (I1, I2, I3, I4),

[CI1I2 , CI2I3 ] = [CI1I2I4 , CI2I3I4 ] + [CI3I4 , CI1I4 ], (2.20)

[CI2I3 , CI3I4 ] = [CI1I2I3 , CI1I3I4 ] + [CI1I4 , CI1I2 ], (2.21)

[CI1I2 , CI2I3I4 ] = [CI1I2I4 , CI2I3 ] + [CI1I2I3 , CI2I4 ], (2.22)
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[CI3I4 , CI1I2I3 ] = [CI1I3I4 , CI2I3 ] + [CI2I3I4 , CI1I3 ], (2.23)

[CI1I2I3 , CI2I3I4 ] = [CI1I2 , CI2I4 ] + [CI3I1 , CI3I4 ], (2.24)

and

[CI1I3 , CI1I2I4 ] = [CI1I3I4 , CI1I2 ] + [CI1I2I3 , CI1I4 ], (2.25)

[CI2I4 , CI1I3I4 ] = [CI1I2I4 , CI3I4 ] + [CI2I3I4 , CI1I4 ], (2.26)

[CI1I4 , CI3I1 ] = [CI2I3 , CI2I4 ] + [CI1I2I4 , CI1I2I3 ]. (2.27)

Proof. We first prove relation (2.20). Relations (2.21)–(2.24) follow the same steps. We use
the relation

[A,B] =
q − q−1

q + q−1

(
[A,B]q − [B,A]q

)
, (2.28)

to split each commutator in (2.20), and simplify the global factor q−q−1

q+q−1 . Then, the left-hand

side of (2.20) leads to −CI1I3 +CI3I1 . For the right-hand side, using (2.17b) and (2.16b), we get

r.h.s. = [CI1I2I4 , CI2I3I4 ]q + CI3I1 − CI1CI3 − CI2I4CI1I2I3I4 − CI1I3 + CI1CI3

+ CI4CI1I3I4 − [CI1I4 , CI3I4 ]q.

Now using (2.4) for CI1I2I4 , the q-Jacobi identity, one obtains

r.h.s. = [−[CI1I2I3 , CI2I3I4 ]q, CI3I4 ]q + CI4 [CI1I2 , CI2I3I4 ]q + CI3CI1I2I3I4CI2I3I4 + CI3I1

− CI2I4CI1I2I3I4 − CI1I3 + CI4CI1I3I4 − [CI1I4 , CI3I4 ]q.

Finally, using (2.4) again for [CI1I2I3 , CI2I3I4 ]q and [CI1I2 , CI2I3I4 ]q, we obtain r.h.s. = CI3I1 −
CI1I3 , which proves (2.20).

Using (2.28) and (2.6), relation (2.25) is equivalent to

[CI1I3 , CI1I2I4 ]q − [CI1I2I4 , CI1I3 ]q

= CI2CI3I4 − CI4CI2I3 − [CI1I2 , CI1I3I4 ]q + [CI1I2I3 , CI1I4 ]q.

Then, we replace the first CI1I2I4 and the second CI1I3 by their definition (2.4), CI1I3I4 by (2.19b)
and CI1I4 by (2.7). After some manipulations, we get

CI3([CI1I2 , CI1I4 ]q − [CI1I2I3 , CI1I3I4 ]q + CI1I3CI1I2I3I4 − CI1CI1I2I4) = 0.

This last relation is proven replacing CI1I4 and CI1I3I4 by their definition (2.4) that proves (2.25).
Relations (2.26) and (2.27) are proven similarly. ■

In the following lemma, non-trivial commuting relations between elements of aw(n) are pro-
vided.

Lemma 2.10. In the algebra aw(n), the following relations are also satisfied for any monotonic
sequence of four adjacent non-empty connected subsets (I1, I2, I3, I4),

[CI1I3 , CI4I2 ] = 0, (2.29a)

[CI1I3I4 , CI1I3 ] = 0, [CI1I2I4 , CI2I4 ] = 0, (2.29b)

[CI1I3I4 , CI1I4 ] = 0, [CI1I2I4 , CI1I4 ] = 0. (2.29c)
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Proof. To prove (2.29a), we use (2.4) to express CI4I2 to get

[CI1I3 , CI4I2 ] = [CI1I3 ,−[CI3I4 , CI2I3 ]q + CI3CI2I3I4 ]

= [CI3I4 , [CI2I3 , CI1I3 ]q] + [CI2I3 , [CI1I3 , CI3I4 ]q] + CI3 [CI1I3 , CI2I3I4 ],

where we used the q-Jacobi identity (2.1c) in the second step. Then, the above q-commutators
are expressed using (2.6) and (2.7). Finally, (2.23) (multiplied by CI3) ends the proof of (2.29a).

The expression of CI1I3I4 (resp. of CI1I2I4) given by (2.18a) (resp. by (2.17a)) now con-
tains only elements commuting with CI1I3 (resp. CI2I4) which shows that relations (2.29b) hold.
Relations (2.29c) are proven similarly using relations (2.15a) and (2.7). ■

A relation [CI1I3 , CI4I2 ] = 0, as proven in the lemma, appeared already in the realisation
studied in [27]. Let us also emphasize that [CI1I3 , CI2I4 ], [CI1I3 , CI3I1 ] ̸= 0. Nevertheless, these
commutators have nice expressions.

Lemma 2.11. For any monotonic sequence of four adjacent non-empty connected subsets (I1, I2,
I3, I4), one gets

[CI1I3 , CI3I1 ]

q2 − q−2
= C2

I2I3 − C2
I1I2 − CI2I3(CI2CI3 + CI1CI1I2I3)

+ CI1I2(CI1CI2 + CI3CI1I2I3), (2.30)

[CI1I3 , CI2I4 ]

q2 − q−2
= CI3CI4CI1I2 + CI1CI2CI3I4 − CI2CI3CI1I4 − CI1CI4CI2I3 − CI1I2CI3I4

+ CI2I3CI1I4 . (2.31)

Proof. To prove (2.30), let replace CI3I1 by its definition and express the (q-)commutators to
obtain

[CI1I3 , CI3I1 ] = − [CI1I3 , [CI2I3 , CI1I2 ]q]

= − 1

q − q−1

(
qCI1I3CI2I3CI1I2 − q−1CI1I3CI1I2CI2I3 − qCI2I3CI1I2CI1I3

+ q−1CI1I2CI2I3CI1I3

)
.

Then, in the four elements of the above sum, we move CI1I3 in the middle of the products
using (2.14a) or (2.14b) to get (2.30).

Replace CI2I4 in the right-hand side of (2.31) by using (2.8) to get

r.h.s. =
1

q2 − q−2

[
CI1I3 ,−q2CI4I2 +

(
q2 + 1

)
(−CI3I4CI2I3 + CI2CI4 + CI3CI2I3I4)

]
=

q

q − 1/q
(−CI1I3CI3I4CI2I3 + CI3I4CI2I3CI1I3 + CI3 [CI1I3 , CI2I3I4 ]).

We have used in the second line the result of Lemma 2.10. By using the commutation relations
to move CI1I3 in the middle of the two first elements of the sum and (2.23) to replace the
commutator, one gets the results (2.31). ■

Remark 2.12. Lemma 2.7 allows us to give an alternative definition of aw(n), where the
defining relations (2.6) and (2.7) are replaced by

CI1I2I4 = −[CI2I3 , CI1I3I4 ]q + CI2CI1I4 + CI3CI1I2I3I4 , if I1 = ∅ or H = ∅, (2.32a)

CI1I3I4 = −[CI1I2I4 , CI2I3 ]q + CI1I4CI3 + CI2CI1I2I3I4 , if H = ∅ or I4 = ∅, (2.32b)

CI2I3 = −[CI1I3I4 , CI1I2I4 ]q + CI3CI2 + CI1I4CI1I2I3I4 , if I4 = ∅ or I1 = ∅. (2.32c)
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for any monotonic sequence of five adjacent connected subsets (I1, I2, H, I3, I4), represented by
the picture

. . . •, •, . . . , •︸ ︷︷ ︸
I1

, •, . . . , •︸ ︷︷ ︸
I2

, •, . . . , •︸ ︷︷ ︸
H

, •, . . . , •︸ ︷︷ ︸
I3

, •, . . . , •︸ ︷︷ ︸
I4

, •, . . . .

Indeed, when H = ∅, the four sets I1, I2, I3, I4 become adjacent: (2.32a) and (2.32b) are
equivalent to (2.19a) and (2.19b). For the other cases, one needs a relabeling of the sets:
for I1 = ∅, (I2, H, I3, I4) → (I1, I2, I3, I4) and for I4 = ∅, (I1, I2, H, I3) → (I1, I2, I3, I4).
Then, (2.32a) for I1 = ∅, (2.32b) for I4 = ∅, (2.32c) for I1 = ∅, (2.32c) for I4 = ∅ are
equivalent to (2.16a), (2.15a), (2.16b), (2.15b), respectively.

This set of relations already appeared in [12] as relations satisfied by the intermediate Casimir
elements of Uq(sl2)

⊗n and in [3] to describe the relations of the Skein algebra Skq(Σ0,n+1).

2.3 Definition of elements CI1...Ik

In this section, we show how to define unambiguously elements CI1...Ik in aw(n), for any mono-
tonic sequence (I1, . . . , Ik) of non-empty connected subsets of {1, . . . , n}. We suppose that the
holes between Ij and Ij+1, denoted by Hj , are non empty. Visually, we have

. . . •, •, . . . , •︸ ︷︷ ︸
I1

, •, . . . , •︸ ︷︷ ︸
H1

, •, . . . , •︸ ︷︷ ︸
I2

, •, . . . , •︸ ︷︷ ︸
H2

, . . . . . . , •, . . . , •︸ ︷︷ ︸
Ik

, •, . . . .

We define CI1I2...Ik recursively on k.
The case k = 2 (a single hole) was already dealt with in (2.4). For k ≥ 2 arbitrary, we choose

a hole, that is we choose a ∈ {1, . . . , k − 1} and we set

CI1...Ik := −[CI≤aHa , CHaI>a ]q + CI≤a
CI>a + CHaCI≤aHaI>a , (2.33)

where I≤a and I>a respectively mean I1 . . . Ia and Ia+1 . . . Ik. All subsets involved in the right-
hand side have strictly less than k − 1 holes, so that the corresponding elements are already
defined in a preceding step of the recursion. From this definition, one sees that CI1...Ik is of
degree k in the generators. One sees also by an easy recursion that

CI1...Ik = Cup
Ik...I1

.

To calculate completely CI1...Ik in terms of the generators, we have to use (2.33) k−1 times using
successively all holes of the sequence. The following lemma shows that the resulting element
does not depend on the order with which the holes are selected.

Lemma 2.13. Let k ≥ 2, (I1, . . . , Ik) be a monotonic sequence of non-empty connected subsets
of {1, . . . , n} with non-empty holes between Ij and Ij+1.

1. The definition (2.33) of CI1...Ik is independent of the choice of a ∈ {1, . . . , k − 1}.
2. Let I = I1 ∪ · · · ∪ Ik−1 and J be a connected set in {1, . . . , n}. If I ∩ J = ∅ or J ⊂ I

or I ⊂ J , then we have [CI1...Ik−1
, CJ ] = 0.

3. Let 1 ≤ p ≤ k − 1, one gets

[CI1I2...Ip , CIp+1...Ik ] = 0. (2.34)

Proof. We prove the three properties simultaneously by a recursion on k. If k = 2, item (1) is
obvious, while for items (2) and (3), there is no element with hole and they are implied by the
defining relations (2.5).
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Let k > 2 and suppose that the lemma is true for k′< k. Consider the sequence (I1, I2, . . . , Ik).
Take two holes Ha and Ha+1 of the sequence. We will show that using Ha or Ha+1, (2.33)
provides the same element. To lighten the presentation, we introduce the following notations:

I = I1 . . . Ia, H = Ha, J = Ia+1, H ′ = Ha+1, K = Ia+2 . . . Ik.

Relation (2.33) with the hole H = Ha gives

C
(a)
I1...Ik

= −[CIH , CHJK ]q + CICJK + CHCIHJK ,

to be compared with

C
(a+1)
I1...Ik

= −[CIJH′ , CH′K ]q + CIJCK + CH′CIJH′K , (2.35)

obtained from relation (2.33) with the hole H ′ = Ha+1.
Using (2.33) for CHJK with the hole H ′ (and the recurrence hypothesis), one gets

C
(a)
I1...Ik

=
[
CIH , [CHJH′ , CH′K ]q − CHJCK − CH′CHJH′K

]
q
+ CICJK + CHCIHJK . (2.36)

From (2.34) and the recursion hypothesis, one gets the following commutation relations

[CIH , CK ] = [CIH , CH′ ] = [CI , CH′K ] = [CH , CH′K ] = [CIH , CH′K ] = 0.

Using the q-Jacobi identity and the above commutation relations, (2.36) becomes

C
(a)
I1...Ik

=
[
[CIH , CHJH′ ]q, CH′K ]

]
q
− [CIH , CHJ ]qCK − CH′ [CIH , CHJH′K ]q

+ CICJK + CHCIHJK .

Then, we use the definition (2.33) for a fewer number of holes to expand all the q-commutators
and we get the right hand side of (2.35). This proves the point (1) for k.

We consider the sequence I = I1 . . . Ik−1 and J a connected subset. By recurrence hypothesis,
CI is defined uniquely by (2.33) independently of a. Choose a such that 1 ≤ a ≤ k − 2.
If I ∩ J = ∅, since J is connected, we have either J ∩Ha = ∅ or J ⊂ Ha. Then, through the
use of (2.33), the commutator [CI , CJ ] reduces to combinations of commutators [CK , CJ ] with
sequences K of at most k− 3 holes and obeying either K ∩ J = ∅ or J ⊂ K. Thus, they vanish
by the recursion hypothesis.

We suppose now that J ⊂ I. Since J is connected, then we have either J ⊂ I≤a, or J ⊂ I>a.
In all cases, using (2.33) again leads to commutators that vanish due to the recursion hypothesis.

When I ⊂ J , the use of (2.33) again allows to construct CI in terms of sequences with less
holes, and to conclude using the recursion hypothesis which finishes the proof of item (2)

Item (3) is proven by expressing CI1I2...Ip and CIp+1...Ik only in terms of the generators of
aw(n) by recursively using (2.33) and then (2.5). ■

Example 2.14. Both following expressions of the element C135 are equivalent:

C135 = −[C134, C45]q + C13C5 + C4C1345 = −[C12, C245]q + C1C45 + C2C1245.

3 Braid group action as automorphisms on aw(n)

In this subsection, we define some maps on the generators of aw(n) and show that they extend
to automorphisms of aw(n). Then, we show that they satisfy relations including the defining
relations of the braid group. We emphasize that this defines an action on aw(n) of the braid
group on n+ 1 strands.
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3.1 Definition of the maps ri

We start by defining an algebra anti-automorphism which is the identity on the generators:

·up : CI 7→ CI for any connected subset I. (3.1)

To check that ·up is well defined, note first that the commutation relations (2.5) are obviously
preserved. Then the defining relation (2.6) is sent to relation (2.14b) corresponding to (I3, I2, I1).
Similarly the defining relation (2.7) to relation (2.15a) corresponding to (I4, I3, I2, I1).

Note that applying the definition on ·up on the formula (2.4) defining elements CI1I2 , we find:

Cup
I1I2

= CI2I1 for any disjoint connected subsets I1, I2.

To prove the above relation, we have used the anti-morphism property of ·up and some commu-
tation relations.

Remark 3.1. Note that there is also an algebra automorphism which is the identity on the
generators and sends q to q−1. It also sends CI1I2 to CI2I1 . The verification is similar as for the
anti-automorphism ·up.

We define maps on the generators of aw(n) extended (keeping the same names) multiplica-
tively on any product of the generators of aw(n) and linearly on any linear combination. We
prove that this indeed results in well-defined automorphisms of aw(n) in Theorem 3.8.

Definition 3.2. Let i ∈ {1, . . . , n− 1}. The map ri on the generators of aw(n) is defined by

ri :


Ci+1...k 7→ Ci,i+2...k for k ≥ i+ 1,

Cj...i 7→ Ci+1,i−1...j for j ≤ i,

Cj...k 7→ Cj...k if {i, i+ 1} ⊂ {j, . . . , k} or {i, i+ 1} ∩ {j, . . . , k} = ∅.

(3.2)

The map r0 on the generators of aw(n) is defined by

r0 :

{
C{j...k} 7→ C{j...k}, 2 ≤ j ≤ k ≤ n,

C{12...k} 7→ C{k+1...n},1, 1 ≤ k ≤ n.

Finally, for a ∈ {0, 1, . . . , n− 1}, the map ra on the generators of aw(n) is defined by

ra(CI) = (ra(CI))
up for any connected subset I,

where the involution .up is defined in (3.1).

Let us remark at once that ra and ra are related by the involution .up in general, namely,

ra(X
up) = (ra(X))up for any X ∈ aw(n). (3.3)

Indeed, this is true when X = CI is a generator, by definition of ra, and thus it is also true for
any product of the generators using the antimorphism property of .up.

Example 3.3. Note that, for i = {1, . . . , n − 1}, the maps ri and ri restricted to the central
elements C1, . . . , Cn act as the transposition of Ci and Ci+1 (and they leave the central ele-
ment C1...n invariant). The maps r0 and r0 exchange C1 with C1...n and leave the other Ci

invariant.
Here are some examples of the action on non-central generators CI :

r2(C34) = C24, r2(C12) = r2(C21) = C31 and r2(C34) = C42, r2(C12) = C13.

For n = 3, the actions of r0 and r0 are

r0(C12) = C31, r0(C23) = C23 and r0(C12) = C13, r0(C23) = C23.

Note that r0 cannot be expressed in terms of ri, ri, i = 1, . . . , n− 1, since r0(C1) = C1...n.
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There exist explicit formulas on arbitrary elements CI . Indeed, even if the image by the
maps ra, ra of an arbitrary element CI1...Ik is not always another element CJ1...Jk′ , there is still
an explicit formula.

Proposition 3.4. Let I = (I1, . . . , Ik) be a monotonic sequence of connected subsets.

1. For i ∈ {1, . . . , n− 1}, the maps ri, ri act on CI as follows:

� If I ∩ {i, i+ 1} has exactly one element, denoted {a} = I ∩ {i, i+ 1}, then

ri(CI) = −[Ci,i+1, CI ]q + C{i,i+1}\{a}CI\{a} + CaCI∪{i,i+1}, (3.4)

ri(CI) = −[CI , Ci,i+1]q + C{i,i+1}\{a}CI\{a} + CaCI∪{i,i+1}. (3.5)

� If I ∩ {i, i+ 1} is empty or contains exactly two elements, then

ri(CI) = ri(CI) = CI . (3.6)

2. The maps r0, r0 act on CI as follows:

r0(CI) = −[C2...n, CI ]q + C{2,...,n}\IC1 + CI∩{2,...,n}C1...n, if 1 ∈ I,

r0(CI) = −[CI , C2...n]q + C{2,...,n}\IC1 + CI∩{2,...,n}C1...n, if 1 ∈ I,

r0(CI) = r0(CI) = CI , if 1 /∈ I. (3.7)

Proof. First, note that the formulas for ra, a = 0, 1, . . . , n − 1, follow from the ones for ra,
using (3.3).

Then, we prove the formulas by recursion on k. The case k = 1 corresponds to a sequence
without hole and the actions (3.4)–(3.7) correspond immediately to the ones of definition 3.2,
using the Definition (2.4) of elements CI1I2 with one hole.

Now, we take k > 1 and we use the definition (2.33) to write

CI = −[CI1H , CHI2 ]q + CI1CI2 + CHCI1HI2 ,

with all elements appearing in the right hand side having fewer than k holes. So we can apply
the induction hypothesis for the action of ri. When {i, i + 1} ⊂ I or {i, i + 1} ∩ I = ∅, the
map ri acts trivially on each term in the right hand side and the result is immediate. When
{i, i + 1} ∩ I = {a}, the map ri leaves invariant one term in the q-commutator. In this case,
the calculation to be done is exactly the same as the one detailed in the appendix around
formula (A.1).

The verification for r0 follows exactly the same steps and we leave it to the reader. ■

Thanks to this proposition, we can relate the action of ra, ra to a usual commutator.

Corollary 3.5. Let I = (I1, . . . , Ik) be a monotonic sequence of connected subsets. We have

ri(CI)− ri(CI) =
q + q−1

q − q−1
[CI , Ci,i+1], i ∈ {1, . . . , n− 1},

r0(CI)− r0(CI) =
q + q−1

q − q−1
[CI , C2...n].

Proof. If I∩{i, i+1} is empty or contains exactly two elements, then Ci,i+1 commutes with CI ,
see Lemma 2.13. In this case, we also have ri(CI) = ri(CI) so the formula is checked. Similarly,
if 1 /∈ I, then C2...n commutes with CI , again by Lemma 2.13, and we also have r0(CI) = r0(CI).

Otherwise, the formulas follow immediately from

[A,B]q − [B,A]q =
q + q−1

q − q−1
[A,B],

since, in ra(CI) and ra(CI), the right-hand side outside the q-commutators coincide. ■
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The actions of ri and ri on an element CI1...Ik may be simple and give another element CJ1...Jk′ .
The conditions on i and the sets Ij such that this happens are given in the following proposition.

Proposition 3.6. Let I = (I1, . . . , Ik) be a monotonic sequence of connected subsets.

1. Let i ∈ {1, . . . , n− 1}. The action of ri on CI1...Ik gives the element

� where i+1 is replaced by i in I1 . . . Ik, if the sequence I1 < · · · < Ik is increasing and
contains i+1 and not i. More precisely, if i+1 is the smallest element of a subset Iℓ,
then

ri(CI) = CI1...Iℓ−1,i,Iℓ\{i+1},Iℓ+1,...Ik .

� where i is replaced by i+1 in I1 . . . Ik, if the sequence I1 > · · · > Ik is decreasing and
contains i and not i + 1. More precisely, if i is the biggest element of a subset Iℓ,
then

ri(CI) = CI1...Iℓ−1,i+1,Iℓ\{i},Iℓ+1,...Ik .

2. If the sequence is increasing: I1 < I2 < · · · < Ik, and 1 ∈ I1. We have

r0(CI1I2...Ik) = CHkHk−1...H1,1,

where H1 < · · · < Hk is the sequence of connected subsets complementary to (I1, . . . , Ik)
in {1, . . . , n}.

Proof. Let i ∈ {1, . . . , n−1}. We detail the proof of the relation when the sequence I1< · · · < Ik
is increasing and contains only i+1. The proof for the other case is similar and should be carried
at the same time. We make again a recursion on the number of holes. For k = 1, we get the
definition (3.2).

We consider I = I1 . . . Iℓ−1Iℓ . . . Ik with k > 1 and i+ 1 ∈ Iℓ. We denote I ′ℓ = Iℓ \ {i+ 1}.
We assume first that ℓ > 2, and take H to be the hole between I1 and I2. Since ℓ > 2, H does

not contain the indices i, i+ 1. We write CI as

CI = −[CI1H , CHI2...Ik ]q + CI1CI2...Ik + CHCI1HI2...Ik .

Applying ri, we get by linearity

ri(CI) = −[CI1H , ri(CHI2...Ik)]q + CI1ri(CI2...Ik) + CHri(CI1HI2...Ik),

where we have used (3.6) when ri acts trivially. Since the remaining generators have one hole
less, we can use the recursion hypothesis to get

ri(CI) = −
[
CI1H , CHI2...Iℓ−1,i,I

′
ℓ...Ik

]
q
+ CI1CI2...Iℓ−1,i,I

′
ℓ...Ik

+ CHCI1HI2...Iℓ−1,i,I
′
ℓ...Ik

. (3.8)

One recognises in the right-hand side of (3.8) the expression of CI1I2...Iℓ−1,i,I
′
ℓ...Ik

.
We consider now the case where ℓ = 1 or ℓ = 2 and k > 2. We start now with a hole H

between Ik−1 and Ik. By hypothesis H does not contain i nor i + 1 and we can perform
a calculation analogous to the one done above to end the recursion.

Finally, it remains only to consider the case k = ℓ = 2. In this case, we use an induction on
the size of the hole H between I1 and I2. We still have i+ 1 ∈ I2 and I ′2 = I2 \ {i+ 1}. If the
size is 1, then H = {i} and applying ri on the defining formula for CI1I2 , we find

ri(CI1I2) = −[Ci+1,I1 , CHI2 ]q + CI1CHI′2
+ Ci+1CI1HI2 ,
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which is indeed equal to CI1,i,I′2
thanks to relation (2.17a) with (I1, I2, I3, I4) → (I1, {i}, {i+ 1},

I ′2). Then if the size of H is greater than 1, then we denote H ′ = H \ {i} and we write CI1I2 as
follows:

CI1I2 = −[CI1H′ , CH′I2 ]q + CI1CI2 + CH′CI1H′I2 ,

which is relation (2.15a). We can then use the induction hypothesis to apply ri and find

ri(CI1I2) = −
[
CI1H′ , CHI′2

]
q
+ CI1Ci,I′2

+ CH′CI1HI′2
,

which is, by (2.33), equal to CI1,i,I′2
as it should.

We postpone the proof of the relation for r0 to the appendix. ■

There are opposite rules for ri, i = 1, . . . , n − 1, which are obtained using the relation with
the antiautomorphism up and read explicitly as:

� if there exists a subset Iℓ whose the smallest element is i + 1 in the decreasing sequence
I1 > · · · > Ik, then ri(CI) = CI1...Iℓ−1,Iℓ\{i+1},i,Iℓ+1,...Ik ;

� if there exists a subset Iℓ whose the biggest element is i in the increasing sequence I1 <
· · · < Ik, then ri(CI) = CI1...Iℓ−1,Iℓ\{i},i+1,Iℓ+1,...Ik .

The rule for r0 is that if the sequence is decreasing: I1 > I2 > · · · > Ik, and 1 ∈ Ik. We have

r0(CI1I2...Ik) = C1,Hk−1...H1H0 ,

where Hk−1 < · · · < H0 is the sequence of connected subsets complementary to (I1, . . . , Ik)
in {1, . . . , n}.

Example 3.7. Let i ∈ {1, . . . , n − 1}. The rules above can be remembered as follow: ri can
only transform the letter i+ 1 into i when the sequence is increasing, and i into i+ 1 when the
sequence is decreasing (so that ri always moves a letter, either i or i+1, to the left, keeping the
sequence monotonic). For example,

r2(C34) = C24, r2(C12) = r2(C21) = C31, r2(C35) = C25, r2(C52) = C53.

Note that, for example, r2(C25) is not another CI (since C25 ̸= C52, the rule above cannot
apply). Nevertheless, r2(C25) can be computed through the formula in Proposition 3.4 above.

We have a similar (but reversed) rule for ri, so that for example,

r2(C34) = r2(C43) = C42, r2(C12) = C13, r2(C53) = C52, r2(C25) = C35.

Similarly, r2(C52) is not another CI but can be computed through Proposition 3.4 above.

3.2 Action of the braid group by automorphisms

We are now ready to state and prove the main result of this section.

Theorem 3.8. The maps ra, ra for a = 0, 1, . . . , n− 1 are automorphisms of aw(n) satisfying:

rara = rara = Id, a = 0, 1, . . . , n− 1,

rara+1ra = ra+1rara+1, a = 0, 1, . . . , n− 2,

rarb = rbra, a, b = 0, 1, . . . , n− 1 with |a− b| > 1,

which are the defining relations of the braid group on n+ 1 strands.
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Proof. The difficult part of the proof is that the maps ra, ra are indeed morphisms. The details
of this part are given in appendix. Once this is known, it remains only to verify the relations
stated in the theorem for the maps ra, ra. Since they are morphisms, it is enough to check the
relations on the generators of aw(n).

The relations rara = rara = Id is an immediate consequence of Proposition 3.6 (which was
proved also for r0 in the preceding step, see Appendix A). Using this proposition, it is also
straightforward to check that both sides of the 3-term braid relation gives the same result when
applied on a generator. This is immediate on an element CI with I of size 1, and otherwise we
have, for the non-trivial cases if i ∈ {1, . . . , n− 2}:

riri+1ri = ri+1riri+1 :


Ci+2...k 7→ Ci,i+3...k for k ≥ i+ 3,

Ci+1...k 7→ Ci,i+1,i+3...k for k ≥ i+ 2,

Cj...i+1 7→ Ci+2,i+1,i−1,...,j for j ≤ i,

Cj...i 7→ Ci+2,i−1...j for j ≤ i− 1.

If i = 1, the non-trivial cases are

r0r1r0 = r1r0r1 :

{
C2...j 7→ Cn...j+1,21 for j ≥ 2,

C1...j 7→ Cn...j+1,2 for j ≥ 2.

Then let a < b with |a−b| > 1. Let I be a connected subset. If I is such that one of the maps ra
or rb (say ra) leaves invariant CI , then it is easy to see that rb(CI) is still invariant by ra, so
that the relation rarb = rbra is verified. The only remaining case is when I = {a+ 1, . . . , b}. In
this case, it is easy to check, using again Proposition 3.6, that we have

rarb = rbra : Ca+1...b 7→

{
Ca,a+2...b−1,b+1 if a > 0,

Cn...b+2,b,1 if a = 0.

Therefore, we have rarb = rbra which is equivalent to rarb = rbra. ■

3.3 Quotient by the centre of the braid group

At this point, we have an action of the braid group on n+1 strands by automorphisms on aw(n).
This action is not faithful, which means that there are more relations satisfied by the maps ra, ra,
not implied by the relations in Theorem 3.8. To give additional relations, consider the following
elements:

∆a,...,b = ra · ra+1ra · . . . · rb . . . ra+1ra = rara+1 . . . rb · . . . · rara+1 · ra for a < b, (3.9)

where the equality between the two expressions is easily obtained using the braid relations. It
is well known [24] that (∆a,...,b)

2 generates the centre of the braid group generated by ra, . . . , rb
as long as b− a ≥ 1.

Proposition 3.9. As automorphisms of aw(n), the maps r0, r1, . . . , rn−1 satisfy:

(∆0,...,n−1)
2 = (∆0,...,n−2)

2 = (∆1,...,n−1)
2 = Id.

These relations can equivalently be written as:

(∆1,...,n−1)
2 = Id, rn−1 . . . r1r

2
0r1 . . . rn−1 = Id. (3.10)

This allows to express r20 in terms of the other automorphisms as:

r20 = r1 . . . rn−2r
2
n−1rn−2 . . . r1 = (∆2,...,n−1)

2.
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Proof. Note that all these relations are satisfied on the central elements C1, . . . , Cn, C1,...,n since
restricted on this stable subset, the automorphisms ra are all involutions.

We first describe explicitly the action of ∆1,...,n−1 on a generator CI . Let I = {i, . . . , j}
with i < j. We have

∆1,...,n−1(Ci...j) = Cn−j+1,...,n−i+1.

To prove this formula, we note first that

r1 . . . rk(Ci...j) =


Ci+1...j+1 if j ≤ k,

C1,i+1...j if i− 1 ≤ k ≤ j − 1,

Ci...j if k < i− 1.

This is easily checked using Proposition 3.6. Now, when applying ∆1,...,n−1 (we use the second
formula for ∆1,...,n−1 in (3.9)) on Ci...j , the element Ci...j remains invariant until reaching the
string r1 . . . ri−1. Then (after acting with the strings r1 . . . ri−1 to r1 . . . rj−1) it becomes C1...j−i,
just before reaching the string r1 . . . rj . The n− j last strings (from r1 . . . rj to r1 . . . rn−1) send
it to Cn−j+1,...,n−i+1, which is the desired result.

At this point, this makes it clear that (∆1,...,n−1)
2 is the identity. We move on to calculating

∆0,...,n−1. We have, still using Proposition 3.6:

∆0,...,n−1(Ci...j) = rn−1 . . . r1r0∆1,...,n−1(Ci...j) =

{
Cn−j...n−i if j ̸= n,

Cn−i+1...n if j = n.

Here also, this makes it clear that (∆0,...,n−1)
2 is the identity. At this point, relations (3.10) are

implied using:

∆0,...,n−1 = rn−1 . . . r1r0∆1,...,n−1 = ∆1,...,n−1r0r1 . . . rn−1.

Finally, we get that ∆0,...,n−2 squares to the identity from the already obtained relations and

∆0,...,n−2 = rn−1 . . . r1r0∆0,...,n−1 = ∆0,...,n−1r0r1 . . . rn−1.

Using that ∆1,...,n−1 = rn−1 . . . r1∆2,...,n−1 = ∆2,...,n−1r1 . . . rn−1 and (∆1,...,n−1)
2 = Id, the

second equality in the expression from r0 follows. ■

Remark 3.10. Let n = 3 and consider only the automorphisms r1, r2, r1, r2. The preceding
proposition implies that these automorphisms give an action of the braid group on 3 strands,
which factors through the quotient by its centre, generated by (r1r2r1)

2. For n = 3, this
quotient of the braid group is also called the modular group and is isomorphic to PSL2(Z). This
automorphism group has been already found in [28] for the universal Askey–Wilson algebra, and
moreover in this case the action is faithful meaning that there is no more independent relations
satisfied by the maps r1, r2.

For arbitrary n ≥ 3, considering only the automorphisms ri, ri with i = 1, . . . , n− 1, we have
an action of the braid group on n strands, which factors through its quotient by its centre, thus
generalising the result of [28] for n = 3. We do not know if the action is faithful for this group.

Remark 3.11. Even for n = 3, we have a new automorphism r0, which produces an action of
the braid group on 4 strands on aw(3). This action also factors through the quotient by the
centre, here generated by (r2r1r0r2r1r2)

2. We have more relations since r20 is expressed in terms
of the other generators. For n = 3, the formula for r20 is simply r20 = r22.

For any n, adding r0, we have an action of the braid group on n + 1 strands, which also
factors through its quotient by the centre. We also have more relations since r20 is expressed in
terms of the other generators. Note that r0 is never in the subgroup generated by r1, . . . , rn−1,
as can be seen from the formula r0(C1) = C1...n.
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Remark 3.12. It may be clear that we must also have an automorphism r′0 which is similar
to r0, but acts on the index n instead of 1. Indeed, we can define the following map:

r′0 :

{
C{j...k} 7→ C{j...k}, 1 ≤ j ≤ k ≤ n− 1,

C{j...n} 7→ C{1...j−1},n, 1 ≤ j ≤ n.

This extends to an automorphism and it satisfies r′0rir
′
0 = rir

′
0ri if i = 0 or i = n − 1, and

commutes with the other ri’s. So altogether, the maps r0, r1, . . . , rn−1, r
′
0 generate the Artin

braid group associated to the affine Dynkin diagram of type A. However, it is not so useful to
consider this additional automorphism r′0 since it can expressed in terms of the others. We have

r′0 = rn−1 . . . r1r0r1 . . . rn−1.

This can easily be checked directly on the generators. Note that the braid relations involving r′0
thus follows from the relations in Proposition 3.9.

3.4 Consequences of the automorphisms

From the fact that ri and ri are automorphisms of aw(n), we can deduce other relations between
the elements of the Askey–Wilson algebra. As stated in the following proposition, relations es-
tablished in the previous lemmas can be generalised to the cases where the sets are not necessarily
adjacent.

Proposition 3.13. For any monotonic sequence of non-empty subsets (I1, I2, I3, I4), the rela-
tions of Lemmas 2.7, 2.9, 2.10 and 2.11 which contain only increasing (resp. decreasing) sequence
also hold in aw(n)

Proof. Let us prove the proposition for an increasing sequence of subsets Iℓ = {iℓ, iℓ+1, . . . , jℓ}
with iℓ ≤ jℓ < iℓ+1. We introduce the subsets I3 = {i3 + i4 − j3 − 1, . . . , i4 − 1}, I2 =
{i2+ i3+ i4− j2− j3−2, . . . , i3+ i4− j3−2} and I1 = {i1+ i2+ i3+ i4− j1− j2− j3−3, . . . , i2+
i3 + i4 − j2 − j3 − 3} such that (I1, I2, I3, I4) is a sequence of adjacent subsets and #Iℓ = #Iℓ.
Then, the relations of the lemmas hold for (I1, I2, I3, I4). We consider the ones which contain
only increasing sequences (for example, second relation of (2.13a) is excluded). Acting with
the automorphisms ri1+i2+i3+i4−j1−j2−j3−4, then ri1+i2+i3+i4−j1−j2−j3−5 up to ri1 we bring the
smallest index of I1 to i1 (which is the smallest index of I1). Iterating the process, we change
the sequence (I1, I2, I3, I4) to (I1, I2, I3, I4), so that these relations hold also for this sequence.
The remaining relations are established using the just proved ones, and following the proofs of
the lemmas. ■

From now one, we use the relations of the lemmas in the general setting of Proposition 3.13
without mentioning it.

4 Coproduct maps on aw(n)

Let a ∈ {0, 1, . . . , n} and 1 ≤ j ≤ k ≤ n. We consider the following map:

δa : Cj...k 7→


Cj...k when k < a,

Cj...k k+1 when j ≤ a ≤ k,

Cj+1...k+1 when a < j.

(4.1)

Note that δ0 corresponds simply to increase the indices by one. We call the maps δa coproduct
maps. The terminology will be clear when considering the tensor products Uq(sl2)

⊗n.
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Proposition 4.1. Let a ∈ {0, 1, . . . , n}. The map δa defines a morphism of algebras from aw(n)
to aw(n+ 1).

Proof. Due to the form of the defining relations of aw(n) involving connected subsets of
{1, . . . , n}, it is immediate to check that the maps δa preserve them. ■

Example 4.2. One gets from the definition: δ2(C1) = C1, δ2(C12) = C123, δ2(C3) = C4.

4.1 Relations between the coproduct and the braid group action

Below we give the relations between the coproduct maps and the automorphisms forming the
action of the braid group. They actually reflect the quasi-triangularity of Uq(sl2) when the
algebra aw(n) is realised in Uq(sl2)

⊗n, see a later section. However, the realisation of aw(n) in
Uq(sl2)

⊗n is not faithful, and thus it is remarkable that the relations below are already satisfied
in aw(n) before taking the quotient corresponding to its realisation in Uq(sl2)

⊗n.

Proposition 4.3. We have the following identities for morphisms from aw(n) to aw(n+ 1):

riδi = δi; δi = riδi for i = 0, 1, . . . , n,

δiri = ri+1riδi+1; riri+1δi = δi+1ri for i = 0, 1, . . . , n− 1,

δi+1ri = riri+1δi; ri+1riδi+1 = δiri for i = 0, 1, . . . , n− 1,

δirj = rjδi; δirj = rjδi for i = 0, 1, . . . , n and j < i− 1,

δirj = rj+1δi; δirj = rj+1δi for i = 0, 1, . . . , n and j > i.

Proof. All the equalities need only to be checked on the generators CI of aw(n), with I a con-
nected subset of {1, . . . , n}. All these verifications are straightforward. ■

4.2 On the definition of aw(n)

We give a more conceptual equivalent definition of the algebra aw(n), which puts forward the
role of the coproduct maps δi and of the automorphisms ri. In the following discussion, we can
and we will ignore the index 0 for the coproduct maps and the automorphisms.

For any n ≥ 1, we consider the algebra aw(n) as generated by elements CI with I any
connected subset of {1, . . . , n}. Let us introduce the natural map:

ιn : aw(n) → aw(n+ 1),

CI 7→ CI (I a connected subset of {1, . . . , n}),

and recall that we have the coproduct maps δ1, . . . , δn defined in (4.1). We make the following
requirements:

1. For n ≥ 1, the map ιn and the coproduct maps are morphisms from aw(n) to aw(n+ 1).

2. For n ≥ 1, there exist automorphisms r1, . . . , rn−1 of aw(n), commuting with ιn, and
satisfying the conditions in Proposition 4.3 (where r1, . . . , rn−1 denote the inverses).

3. For n = 2, aw(2) is commutative, and the automorphism r1 exchanges C1 and C2.

4. Finally, for n = 3, we impose the following formulas for the automorphism r1:

r1(C23) = −[C12, C23]q + C1C3 + C2C123,

r1(C23) = −[C23, C12]q + C1C3 + C2C123, (4.2)

that is, with our notations, r1(C23) = C13 and r1(C23) = C31.
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Note that the condition of commuting with ιn in the second item simply means that if ri(CI) is
calculated in aw(n), the same result will be true in aw(n′) for any n′ > n.

Now let us discuss the meaning of the above requirements step by step:

� When considering Hopf algebras, the first two items encode the quasitriangularity. Namely,
let A be a quasitriangular Hopf algebra and C be any element of A. We can define elements
CI in A⊗n obtained by repeated applications of the coproduct map of A on C. Then the
first two items will be automatically satisfied if we take the subalgebra in A⊗n generated
by these elements CI . The maps δi are realised by

∆i : A⊗n → A⊗(n+1),

which is the coproduct ∆ applied in the ith copy of A. The automorphisms ri, i =
1, . . . , n− 1, are realised by

ρi : A⊗n → A⊗n,

X 7→ τi,i+1

(
Ri,i+1XR−1

i,i+1

)
,

where R is the R-matrix and τi,i+1 is the flip operation between the ith and (i + 1)th

copies of A. Then the relations in Proposition 4.3 becomes direct translations of the
quasitriangularity of A.

� Now the third item will be automatically satisfied if we take for C a central element of A
(such as for example the Casimir element of a quantum group Uq(g)). This is immediate
to check.

� The final requirement is the only one which is very specific. It comes from a relation which
was shown to be satisfied when C is the Casimir element of Uq(sl2) [7].

The first key point about these requirements is that they completely fix the action of the
automorphisms r1, . . . , rn−1 and their inverses on the generators. This is straightforward to
check, recursively on n, and we will only show how this works for n = 3, leaving the remaining
details for the reader. First, we apply the relations

r1δ1 = δ1 and r2δ2 = δ2,

on all generators C1, C2, C12. We get that r1 leaves invariant C3, C12, C123 and that r2 leaves
invariant C1, C23, C123. Since we already know that r1 exchanges C1 and C2 and the action
of r1, r1 on C23 (the last axiom), we are done for r1 and its inverse. Then, we use the relations

δ1r1 = r2r1δ2 and δ2r1 = r1r2δ1.

This gives the remaining actions of r2 and its inverse, namely that r2 exchanges C2 and C3

and r2(C12) = C31 and r2(C12) = C13.
Then, the second implication of these requirements is that all relations appearing in the

definition of aw(n) are necessary. For n = 3, the commuting relations are easy to obtain from
the commutativity of aw(2) by applying the coproduct maps and some suitable automorphisms.
Then, using the known actions of the automorphisms, we apply r1r2 on the first relation in (4.2)
and r2 on the second relation in (4.2), and we recover the usual defining relations of aw(3) as
discussed in Example 2.6. For n > 3, it is straightforward to get all defining relations from those
for n = 3 by repeated applications of coproduct maps and automorphisms.

Since we know from the results in the preceding sections that our definition is also suffi-
cient to satisfy the above requirements, we conclude with the following conceptual view on the
algebras aw(n).
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Proposition 4.4. The defining relations in Definition 2.4 of the algebras aw(n) are necessary
and sufficient to satisfy the above requirements (1) to (4). In other words, the algebras aw(n)
are the largest algebras satisfying these requirements, and for any other sequence of algebras An

satisfying these requirements, we have that An is a quotient of aw(n).

5 Casimir elements

In this section, we use the known central element of aw(3) and the machinery of coproducts and
braid group automorphisms to produce a family of central elements of aw(n) for any n.

Let (I1, I2, I3) be a sequence of subsets such that I1 < I2 < I3 (not necessarily adjacent)
where each Ij is seen as an increasing sequence of connected subsets. We define the following
element of aw(n)

ΩI1,I2,I3 = qCI1I2CI2I3CI1I3 +
q2C2

I1I2
+ q−2C2

I2I3
+ q2C 2

I1I3
+ C2

I1I2I3
+ C2

I1
+ C2

I2
+ C2

I3

q + q−1

− qCI1I2(CI1CI2 + CI3CI1I2I3)− q−1CI2I3(CI2CI3 + CI1CI1I2I3)

− qCI1I3(CI1CI3 + CI2CI1I2I3) + (q + q−1)CI1CI2CI3CI1I2I3 −
1

q + q−1
, (5.1)

called Casimir elements. This name comes from the fact that these elements are central in aw(n)
as shown below. The last term in (5.1) ensures that ΩI1,I2,I3 = 0 whenever at least one of the
subsets I1, I2 or I3 is empty.

Note that the coproduct maps are easy to apply on the elements ΩI1,I2,I3 . We have immedi-
ately:

δi(ΩI1,I2,I3) = ΩI′1,I
′
2,I

′
3
, (5.2)

where I ′a (a = 1, 2, 3) is obtained from Ia by increasing by 1 all elements strictly greater than i,
and furthermore adding i+ 1 next to i if i ∈ Ia.

5.1 The central element of aw(3)

In aw(3), there is only one Casimir element denoted Ω1,2,3. It was first introduced in [16], see
also [4, 31]. We record its main properties in the following proposition.

Proposition 5.1. The element Ω1,2,3 is central in aw(3) and is invariant by r1, r1, r2, r2.

Proof. The centrality of Ω1,2,3 is proven in [16]. Since ri is the inverse of ri, it is enough to
show the property for r1 and r2. Their actions on Ω1,2,3 are easy to compute. Then, algebraic
manipulations using the aw(3) relations show that we get back to Ω1,2,3. ■

5.2 The central elements of aw(4)

In aw(4), the possible choices of I1, I2, I3 lead to the following list of Casimir elements:

Ω1,2,3, Ω1,2,4, Ω1,3,4, Ω2,3,4, Ω12,3,4, Ω1,23,4, Ω1,2,34. (5.3)

We have the following properties.

Proposition 5.2. The elements in (5.3) are all central in aw(4) and satisfy

Ω12,3,4 −Ω1,3,4 −Ω2,3,4 = Ω1,23,4 −Ω1,2,4 −Ω1,3,4 = Ω1,2,34 −Ω1,2,3 −Ω1,2,4. (5.4)
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Proof. We do not have a simple proof for the equalities in (5.4) and for the fact that Ω1,2,3 com-
mutes with C34. For these two facts, we rely on computer-aided calculations [30], that we use in
the following way. We have implemented the relations (2.13a)–(2.16c), (2.17b), (2.18b), (2.19a)–
(2.19c), (2.22)–(2.23), (2.25)–(2.26), (2.29b), (2.29c) and (2.31) which allow us to order the
elements of the following set

G = {C134, C14, C124, C24, C13, C234, C123, C34, C23, C12}.

Therefore, any word W ∈ aw(4) can be written as follows:

W =
∑

i1,...i10

ai1...i10(C134)
i1(C14)

i2(C124)
i3(C24)

i4(C13)
i5(C234)

i6(C123)
i7(C34)

i8(C23)
i9(C12)

i10 .

The diamond lemma checks the associativity of the product in the algebra. It consists in choosing
three elements A, B, C of G in the wrong order and to order them following two different ways:
firstly we order AB, then we order the result with C, secondly we order BC, and then we order
the result with A. This provides relations between ordered monomials. We have computed also
further relations by using the diamond lemma with these new relations and the ordering ones.
This set of relations allows to check (5.4) and that Ω1,2,3 commutes with C34.

At this stage, we know that Ω1,2,3 commutes with C12, C23, C123, from Proposition 5.1,
and with C34. This implies that it commutes with C124, using the definition of C124 in terms
of C123 and C34. Then since C234 = r1r2(C124) and since r1, r2 leave Ω1,2,3 invariant, it follows
that Ω1,2,3 commutes also with C234 and is therefore central in aw(4).

Now we can obtain all others Ωi,j,k from Ω1,2,3 by applying some automorphisms as follows:

Ω1,2,4 = r3(Ω1,2,3), Ω1,3,4 = r2(Ω1,2,4), Ω2,3,4 = r1(Ω1,3,4).

These are directly obtained from the definition of Ωi,j,k and the explicit formulas for the action
of the automorphisms ri in Proposition 3.6. So we have that all Ωi,j,k are central in aw(4).

Finally, we note that, by definition of the coproduct maps, we have

Ω12,3,4 = δ1(Ω1,2,3), Ω1,23,4 = δ2(Ω1,2,3), Ω1,2,34 = δ3(Ω1,2,3),

and that these three elements coincide, due to the equalities (5.4) up to elements which are
already central. So for any generator CI of aw(4), we only need to show that it commutes
with one of these three elements. We can assume that |I| > 1 (otherwise CI is central), and
thus we have that CI = δi(CJ) for some i and some J ⊂ {1, 2, 3}. Applying δi to the relation
[Ω1,2,3, CJ ] = 0 of aw(3), we get that CI commutes with one of the elements above, as needed. ■

We associate a central element ωS to any subset S ⊂ {1, 2, 3, 4} with |S| ≥ 3:

� for S = {a, b, c}, we set ω{a,b,c} = Ωa,b,c with a < b < c;

� for S = {1, 2, 3, 4}, the relations (5.4) allow to define a unique element:

ω{1,2,3,4} = Ω12,3,4 −Ω1,3,4 −Ω2,3,4 = Ω1,23,4 −Ω1,2,4 −Ω1,3,4

= Ω1,2,34 −Ω1,2,3 −Ω1,2,4.

The following result gives the action of the braid group automorphisms on the central ele-
ments ωS and shows that this action simply amounts to the permutation action of the symmetric
group on the subset S. Below, (i, i+ 1) denotes the transposition of i and i+ 1.

Proposition 5.3. For all S ⊂ {1, 2, 3, 4} with |S| ≥ 3, and all i = 1, 2, 3, we have

riωS = riωS = ω(i,i+1)·S .
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Proof. Several actions of the automorphisms on the elements Ωa,b,c are immediate to obtain
from the explicit formulas for the action of the automorphisms ri in Proposition 3.6. In fact, we
have at once that Ωa,b,c is invariant by ri, ri if {i, i+ 1} ⊂ {a, b, c}. We also have immediately
that if {i, i+1}∩{a, b, c} = {i}, then ri transforms i into i+1, while if {i, i+1}∩{a, b, c} = {i+1},
then ri transforms i+ 1 into i. So it remains to show

r3(Ω1,2,3) = Ω1,2,4, r2(Ω1,2,4) = Ω1,3,4, r1(Ω1,3,4) = Ω2,3,4. (5.5)

First, we note that, either directly or using the relation riδi = δi, we have

r1Ω12,3,4 = Ω12,3,4, r2Ω1,23,4 = Ω1,23,4, r3Ω1,2,34 = Ω1,2,34.

Using the relation r3δ1 = δ1r2 and r1δ3 = δ3r1, we get also

r3Ω12,3,4 = Ω12,3,4, r1Ω1,2,34 = Ω1,2,34.

Then, using (5.4), we can write

Ω1,2,3 +Ω1,2,4 = Ω12,3,4 −Ω1,2,34 −Ω1,3,4 −Ω2,3,4.

The right-hand side is invariant by r3, so we deduce that the left-hand side is as well. Since
we already know that r3Ω1,2,4 = Ω1,2,3 we conclude that r3Ω1,2,3 = Ω1,2,4. The other actions
in (5.5) are proved in a similar way. ■

5.3 Central elements of aw(n) for any n

The definition of ωS introduced in the previous section for n = 4, is now generalised. If
S ⊂ {1, . . . , n} we naturally consider the element ωS defined below as an element of aw(n′)
for any n′ ≥ n.

Proposition 5.4. Let S ⊂ {1, . . . , n}, with |S| ≥ 3. Let I1, I2, I3 be three non-empty subsets
of S such that I1 ∪ I2 ∪ I3 = S and I1 < I2 < I3. The quantity

ωS =
∑

I⊂I1,J⊂I2
K⊂I3

(−1)|S|−|I|−|J |−|K|ΩI,J,K (5.6)

is well defined in the sense that it does not depend on the choice of I1, I2, I3.

Proof. In the course of the proof, we will denote ωI1,I2,I3 the right-hand side of (5.6). We
prove this proposition by recursion on the cardinality of S. The case |S| = 3 is trivial.
For S = {1, 2, 3, 4}, the proposition is proven by equation (5.4). Suitable applications of
the maps r1, . . . , rn−1 to the equalities (5.4) yield the corresponding equalities for any in-
dices a < b < c < d. For example, r4 changes 4 in 5. This allows to prove the statement for
S = {a, b, c, d}.

Now we take k ≥ 5, suppose that ωS is well defined when |S|<k and consider S={1, 2, . . . , k}.
By recursion hypothesis, we have

ω{1,...,k−1} = ω{1,...,p−1},{p,...,q−1},{q,...,k−1} = ω{1,...,p},{p+1,...,q−1},{q,...,k−1}.

From (5.2), the following formulas for the application of δ1 are easy to check:

δ1ω{1,...,p−1},{p,...,q−1},{q,...,k−1} = ω{1,2,...,p},{p+1,...,q},{q+1,...,k}

+ ω{1,3,...,p},{p+1,...,q},{q+1,...,k} + ω{2,...,p},{p+1,...,q},{q+1,...,k}, (5.7)

δ1ω{1,...,p},{p+1,...,q−1},{q,...,k−1} = ω{1,2,...,p+1},{p+2,...,q},{q+1,...,k}

+ ω{1,3,...,p+1},{p+2,...,q},{q+1,...,k} + ω{2,...,p+1},{p+2,...,q},{q+1,...,k}. (5.8)

By recursion hypothesis, the two last terms in (5.7) and in (5.8) coincide, so that the two
remaining terms coincide as well. This shows that we can move a letter from I1 to I2. The
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similar statement from I2 to I3 is proven along the same lines. This allows to relate any possible
choices of I1, I2, I3. Suitable applications of the maps r1, . . . , rn−1 yield the statement for any S
of cardinal k, as it was done above for k = 4. ■

Action of the coproduct maps. We deduce how the elements ωS in aw(n) are related to
those of aw(n+ 1) by the coproduct maps.

Corollary 5.5. Let S′ ⊂ {1, . . . , n} and i ∈ {1, . . . , n}.

� If i /∈ S′, we have

δiωS′ = ωS ,

where S is obtained from S′ by increasing by 1 all elements greater than i.

� If i ∈ S′, we have

δiωS′ = ωS + ωS\{i} + ωS\{i+1}, (5.9)

where S is obtained from S′ by increasing by 1 all elements greater than i, and adding i+ 1.

Proof. When i /∈ S′, the formula is immediate using (5.2) on any definition of ωS′ . If i ∈ S′,
from the preceding proposition, we can define ωS′ using a partition (I1, I2, I3) of S′ such that
one of the subset is the singleton {i}. Then the formula (5.9) becomes straightforward to check
using (5.2). ■

Centrality of the elements ωS. Now we can prove that all elements ωS are central. Note
that this is equivalent to the centrality of the elements ΩI1,I2,I3 since both sets span the same
space.

Proposition 5.6. For any S ⊂ {1, 2, . . . , n} with |S| ≥ 3, the element ωS is central in aw(n).

Proof. First, we note that it is enough to prove that ω1...k is central for any k ≥ 3. Indeed,
if we have S = {i1, . . . , ik} with i1 < i2 < · · · < ik, there is a sequence of ri’s sending ω1...k

to ωS . For example, the sequence rik . . . rk transforms the index k in ω1...k into ik, and a similar
argument allows to transform the other indices into i1, i2, . . . , ik−1. So indeed the centrality
of ω1...k implies the centrality of ωS since they are related by an automorphism.

Now we prove that ω1...k is central by induction on k. Let k = 3. It is immediate that ω123

commutes with CI if I is disjoint from {1, 2, 3}. So we take I = {a, . . . , b − 1, b} with a ≤ 3
and b ≥ 3 and we use induction on b. Propositions 5.1 and 5.2 deal with the cases b = 3 and b = 4.
So let b ≥ 5. In this case CI = δb−1(Ca...b−1). By induction hypothesis, ω123 commutes with
Ca...b−1 and applying δb−1, using that δb−1(ω123) = ω123, we get that ω123 commutes with CI .

Next, let k ≥ 3 and assume by induction that ωS is central for any S with |S| ≤ k. We will
prove that ω1...k+1 commutes with CI for any connected subset I and it is enough to assume
that |I| > 1, since otherwise CI is central. Since |I| > 1, then CI = δi(CJ) for some i and
some J . By induction, we have that [ω1...k, CJ ] = 0, and applying δi, we get

[ω{1,...,k+1} + ω{1,...,k+1}/{i} + ω{1,...,k+1}/{i+1}, CI ] = 0,

using Corollary 5.5 for the action of δi on ω1...k. By induction hypothesis, CI commutes with
the two summands corresponding to subsets of size k, so we conclude that it commutes also
with ω{1,...,k+1}. ■

Action of the automorphisms r1, . . . , rn−1. The following result gives the action of the
braid group automorphisms r1, . . . , rn−1 on the central elements ωS and shows that this action
simply amounts to the permutation action of the symmetric group on n letters on subsets S
of {1, . . . , n}. Below, (i, i+ 1) denotes the transposition of i and i+ 1.
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Proposition 5.7. For all S ⊂ {1, . . . , n} with |S| ≥ 3, and all i = 1, . . . , n− 1, we have

ri(ωS) = ri(ωS) = ω(i,i+1).(S). (5.10)

Proof. We first consider ΩI1,I2,I3 as defined in (5.1), and set S = I1 ∪ I2 ∪ I3.
If {i, i+ 1} ⊂ I1 (or I2 or I3) or if {i, i+ 1} ∩ S = ∅, it is clear that ri(ΩI1,I2,I3) = ΩI1,I2,I3 .

If i ∈ I1 and i+1 ̸∈ S, then ri transforms i into i+1 for each element CI entering the definition
of ΩI1,I2,I3 , so that ri(ΩI1,I2,I3) = Ω(i,i+1).I1,I2,I3 . We get similar expressions when i ∈ I2 or i ∈ I3
and i + 1 ̸∈ S. Reciprocally, if i + 1 ∈ I1 and i ̸∈ S we get ri(ΩI1,I2,I3) = Ω(i,i+1).I1,I2,I3 and
analogous expressions for i+ 1 ∈ I2 or i+ 1 ∈ I3 (and i ̸∈ S).

From the previous paragraph, we get immediately that

when i ∈ S and i+ 1 ̸∈ S, ri(ωS) = ω(i,i+1).(S),

when i+ 1 ∈ S and i ̸∈ S, ri(ωS) = ω(i,i+1).(S). (5.11)

Now, we are ready to prove (5.10) using a recursion on |S|. Let i ∈ {1, . . . , n − 1}, and
consider ri(ωS). We note that when {i, i+1}∩S = ∅, the relation (5.10) is obvious, so that we
will always assume that {i, i+ 1} ∩ S is not empty.

We start with |S| = 3. If {i, i + 1} ⊂ S, then acting with suitable rk’s and rk’s commuting
with ri, only using (5.11), it is sufficient to consider S = {i− 1, i, i+ 1}, or S = {i, i+ 1, i+ 2}.
Then, the result follows from Proposition 5.1. If i ∈ S and i+1 ̸∈ S, then acting with suitable rk’s
and rk’s commuting with ri, only using (5.11), it is sufficient to consider S = {i − 2, i − 1, i},
S = {i− 1, i, i+ 2}, or S = {i, i+ 2, i+ 3}. Then, the result follows from Proposition 5.2. The
last case i+ 1 ∈ S and i ̸∈ S is dealt with similar arguments.

Let |S| > 3 and assume that the proposition is proved for sets of size smaller than |S|.
Suppose {i, i + 1} ⊂ S. Then, there exists a subset S′ with 3 ≤ |S′| < |S| such that using
Corollary 5.5, we have

ωS = δiωS′ − ωS\{i} − ωS\{i+1}.

The map ri exchanges ωS\{i} and ωS\{i+1} by induction hypothesis, and leaves δiωS′ invariant,
since riδi = δi. We conclude that ri(ωS) = ωS .

If i ∈ S and i + 1 ̸∈ S, by (5.11), we only need to consider the action of ri. Acting with
suitable rk’s and rk’s commuting with ri, only using (5.11), it is sufficient to consider S = S1∪S2

with S1 = {. . . , i} and S2 = {i+2, . . . } and both connected. If |S2| > 1, there exists a subset S′

with 3 ≤ |S′| < |S| such that using Corollary 5.5, we have

ωS = δi+2ωS′ − ωS\{i+2} − ωS\{i+3}.

Note that ri commutes with δi+2. Using the induction hypothesis, we find

riωS = δi+2ω(i,i+1).S′ − ω(i,i+1).S\{i+2} − ω(i,i+1).S\{i+3}.

Using again the Corollary 5.5, the right-hand side is indeed ω(i,i+1).S .
Finally, if |S2| ≤ 1, then |S1| > 2, there exists a subset S′ with 3 ≤ |S′| < |S| such that using

Corollary 5.5, we have

ωS = δi−2ωS′ − ωS\{i−2} − ωS\{i−1}.

Note that riδi−2 = δi−2ri−1. Using the induction hypothesis, we find

riωS = δi−2ω(i−1,i).S′ − ω(i,i+1).S\{i−2} − ω(i,i+1).S\{i−1}.

Using again the Corollary 5.5, the right-hand side is indeed ω(i,i+1).S . The last case i + 1 ∈ S
and i ̸∈ S is dealt with similar arguments. ■
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Remark 5.8. A consequence of the above properties of the central elements ωS is that they are
invariant under the map (.)up. Indeed, it is checked by direct calculation for ω{1,2,3}, and then
extended to ω{1,...,k} using the fact that the coproduct maps commute with (.)up. Finally, the
property for any set S is obtained from the equality ri(X

up) = ri(X)up, valid for any element X,
and the fact that ri = ri on the Casimir elements.

Action of the automorphism r0. So far we have proved in particular that the set

Γn = Span{ωS , S ⊂ {1, . . . , n}}

of central elements is stable under the action of the automorphisms r1, . . . , rn−1 (and their
inverses). Here we complete our study by considering the automorphism r0. There are explicit
formulas for the action of r0 on the central elements ωS but they are not very illuminating, so we
shall be satisfied by proving that the automorphism r0 does not produce new central elements

Proposition 5.9. The automorphism r0 of aw(n) leaves stable Γn and moreover satisfies
r20(ωS) = ωS for any S ⊂ {1, . . . , n}.

Proof. First, note that r20(ωS) = ωS follows from the formula r20 = r1 . . . rn−2r
2
n−1rn−2 . . . r1

of Proposition 3.9 and the fact that Γn is stable under r1, . . . , rn−1 and r21 = · · · = r2n−1 = Id
on Γn.

Then we prove by recurrence on n that in aw(n), we have that r0(ω123) ∈ Γn. For n = 3,
this is a straightforward calculation to show that r0(ω123) = ω123.

For n = 4, a direct application on the definition of ΩI1,I2,I3 of the explicit formulas of
Proposition 3.6 for the action of the automorphisms ra gives

r0(ω123) = r3r2
(
Ωup

12,3,4

)
= r3r2(Ω12,3,4),

where we used the invariance under the map .up of the elements ΩI1,I2,I3 for the last equality;
this follows from Remark 5.8. The last expression is in Γ4 since Ω12,3,4 is in this span, which we
already know to be stable by r2, r3.

Then we apply the coproduct map δ4 on the statement r0(ω123) ∈ Γ4. The map δ4 commutes
with r0 (see Proposition 4.3) and obviously sends ω123 to ω123. It also sends Γn to Γn+1, from
Corollary 5.5, so by induction we conclude that r0(ω123) ∈ Γn for any n ≥ 3.

Next, quite similarly as in the previous paragraph, we apply δ3 on the statement r0(ω123)∈Γn.
The map δ3 still commutes with r0 and this allows to prove that r0(ω1234) is in the desired span.
Going on applying δ4, δ5, . . . , we get by induction that r0(ω1...k) is in the desired span for
all k ≥ 3.

Now, using Proposition 5.7, one can go from ω1...k to any ωS with |S| = k by applying
a suitable sequence of maps ri. Moreover if 1 ∈ S, we can use only the maps ri with i ≥ 2 (we
do not need to touch the letter 1), which commute with r0. Thus r0(ωS) is in the correct span
if 1 ∈ S.

Finally, if 1 /∈ S, then we trivially have r0(ωS) = ωS since ωS is expressed in terms of
generators CI with 1 /∈ I, and these are all left invariant by r0. ■

Example 5.10. During the proof, we got the equality r0(ω1,2,3) = r3r2(Ω12,3,4). This can be
used to give explicit expressions for the action of r0. We skip the details and give the results
for n = 4. In the basis ω123, ω124, ω134, ω234, ω1234, the action of r0 is given by the following
matrix:

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 1 1 1 −2
1 1 1 0 −1

 .
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Explicit but cumbersome formulas can be obtained for any n by applying suitable coproduct
maps and automorphisms as described during the proof.

Remark 5.11. Since r20 = r21 = · · · = r2n−1 = Id on the set of central elements ωS , the action of
the braid group on n+ 1 strands by automorphisms become an action of the symmetric group
on n+ 1 letters on Γn.

6 Connections with Uq(sl2)
⊗n and the skein algebra

In this section, we show how the aw(n) algebra is related to Uq(sl2)
⊗n and to a certain Kauff-

man bracket skein algebra. More precisely, one has to consider in Uq(sl2)
⊗n the subalgebra

generated by the intermediate Casimir elements. We note that this algebra was recently shown
to be isomorphic to the Kauffman bracket skein algebra of the sphere with n+ 1 punctures [3].
Therefore, we will mostly discuss the Uq(sl2)

⊗n case.
Consider the quantum group Uq(sl2) following the conventions and notations of [4], and

denote by Q its Casimir element (note that we have divided the Casimir element of [4] by
q+ q−1, as explained in Example 2.6). By repeated application of the coproduct map of Uq(sl2)
on Q, we construct the intermediate Casimir element QI , where I is a connected subset of
{1, . . . , n}.

We have a morphism of algebras given by

φ : aw(n) → Uq(sl2)
⊗n,

CI 7→ QI ,

It is known that the defining relation of aw(n) are obeyed by the elements QI [3, 12]. Alterna-
tively, the statement for general n is obtained by applying the coproduct maps and the braid
group automorphism on the corresponding statement for n = 3. We refer to the discussion in
Section 4.2.

Remark 6.1. We wish to stress that several authors [3, 12] call the image of the map φ the
Askey–Wilson algebra aw(n). We follow instead the terminology of [4], where the image of φ
was referred to as the special Askey–Wilson algebra.

The maps δi and ri, ri are interpreted naturally through the morphism φ. Indeed, δi is sent
to the coproduct map

∆i : Uq(sl2)
⊗n → Uq(sl2)

⊗(n+1),

which is the coproduct ∆ applied in the ith copy of Uq(sl2). In the same way, the morphisms ri,
i = 1, . . . , n− 1, are sent to the morphisms

ρi : Uq(sl2)
⊗n → Uq(sl2)

⊗n,

X 7→ τi,i+1

(
Ri,i+1XR−1

i,i+1

)
,

where R is the R-matrix and τi,i+1 is the flip operation between the ith and (i + 1)th copies
of Uq(sl2). This was shown for n = 3 in [7]. It is then extended to general n using the
relations between the coproduct maps δi and the automorphisms ri in Proposition 4.3, see also
the discussion in Section 4.2.

Similarly, the maps δi and ri, ri are also interpreted in the skein algebra by, respectively, an
operation doubling the puncture i, and the half Dehn twist, see [4] or [3] for more details.

Remark 6.2. The map r0 is naturally interpreted in the skein algebra as a half Dehn twist
involving the puncture at infinity. Such an easy interpretation of the map r0 in Uq(sl2)

⊗n does
not seem to exist.
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To describe the algebra generated by the intermediate Casimir elements in Uq(sl2)
⊗n, we

need to determine the kernel of φ. A first step in this determination is given by the following
proposition, which becomes an easy by-product of our construction.

Proposition 6.3. All the central elements ωS, S ⊂ {1, . . . , n} are in the kernel of the map φ:

φ(ωS) = 0.

Proof. The fact that φ(ω{1,2,3}) = 0 is known, see, e.g., [4]. The general statement then follows
from the fact that any ωS can be obtained from ω{1,2,3} through suitable applications of the
coproduct maps δi and the automorphisms ri, ri, see Corollary 5.5 and Proposition 5.7. ■

We do not know a set of generators for the kernel of φ in general. For n = 3, it is known that
ω{1,2,3} generates the kernel [4]. For n = 4, a generating set was given in [3, Appendix A]. We
were able to check that all the expressions1 in [3, Appendix A] correspond to central elements
in aw(4), so that the kernel of φ is generated by central elements for n = 4. Moreover, we
also showed that the so-called loop triple relations, link triple relations and double and triple
crossing relations in [3] are identically zero in the algebra aw(4), but we still do not know if the
kernel is generated by the central elements ωS . Similarly, for n ≥ 5, it would be interesting too
compare aw(n) with the defining relations of the Kauffman bracket skein algebra given in [2].

7 Limit to the Racah algebra

In this section, we consider the limit q → 1 in the relations of the algebra aw(n), and show
how to recover some relations of the Racah algebra R(n). In particular, we find all the defining
relations of R(4), as described in the appendix of [5].

We use the following change of generators, for any connected subset I,

CI =

(
q − q−1

)2
q + q−1

KI + 1.

For any expression in aw(n) in terms of the generators CI , we replace CI using the above change
of generators, and then look at the first non-trivial coefficient in the expansion around q = 1.

7.1 Relations with 3 subsets

Let I1, I2, I3 be a monotonic sequence of adjacent subsets. The first non-trivial coefficients in
relations (2.6) and (2.14b) in the limit q → 1 give

1

2

[
KI1I2 , [KI1I2 ,KI2I3 ]

]
= K2

I1I2 + {KI1I2 ,KI2I3} − (KI1 +KI2 +KI3 +KI1I2I3)KI1I2

− (KI1 −KI2)(KI3 −KI1I2I3), (7.1a)

1

2

[
KI2I3 , [KI2I3 ,KI1I2 ]

]
= K2

I2I3 + {KI1I2 ,KI2I3} − (KI1 +KI2 +KI3 +KI1I2I3)KI2I3

− (KI1 −KI1I2I3)(KI3 −KI2), (7.1b)

where {A,B} = AB + BA is the anti-commutator. One recognises the relations defining an
algebra R(I1, I2, I3) isomorphic to the Racah algebra R(3), see, e.g., [4], where such limit was
already considered for n = 3.

1By expression, we mean here the right-hand side minus the left-hand side of each relation.
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7.2 Relations with 4 subsets

Next, we consider a monotonic sequence of adjacent subsets I1, I2, I3, I4, and the relations (2.15)–
(2.19). We use the notation with a prime on the number of the equation when we consider it by
exchanging the order of the subsets (I1, I2, I3, I4) → (I4, I3, I2, I1). It is easy to see that all the
relations (2.15)–(2.19) as well as their prime versions have the same first non-trivial coefficient
in the limit q → 1:

[KI1I2 ,KI2I3 ]+[KI2I3 ,KI3I4 ]−[KI1I2I3 ,KI3I4 ]−[KI1I2 ,KI2I3I4 ]+[KI1I2I3 ,KI2I3I4 ]=0, (7.2)

One recognises one of the relations defining an algebra R(I1, I2, I3, I4) isomorphic to the Racah
algebra R(4): it corresponds to the relation (A.13) of [5].

Now, considering the sums (2.16a)+(2.15a)′, (2.16a)′+(2.15a), (2.19a)+(2.19b)′, (2.19a)′+
(2.19b), (2.16b)+(2.15b)′, (2.16b)′+(2.15b) leads to six new relations. For example, (2.16a)+
(2.15a)′ gives

1

2

[
KI3I4 , [KI1I2 ,KI2I3 ]

]
= KI1I2(KI2I3 +KI3I4 −KI2I3I4 −KI3) +KI2I3(KI3I4 −KI1I2I3I4)

−KI3I4KI2 +KI1I2I3(KI2I3I4 −KI3I4 −KI2)−KI2I3I4KI3

+ (KI2 +KI3)KI1I2I3I4 +KI2KI3 ,

where we have used (7.2) to simplify the right-hand side of the relation. Among these six
relations, four of them are (A.14)–(A.17) in the notations of [5], where the indices 1, 2, 3, 4
are replaced by the subsets I1, I2, I3, I4. The remaining ones can be obtained using these four
relations and the relation (7.2).

The four relations, together with (7.1a)–(7.1b) and (7.2), form a complete set of defining rela-
tions for the algebra R(I1, I2, I3, I4) isomorphic to the Racah algebra R(4), see [5, Appendix A]
(it can be shown that the remaining defining relations in [5, Appendix A] are consequences for
these ones).

The relations obtained above involving 3 and 4 subsets of {1, . . . , n} are a set of defining
relations of the so-called higher rank Racah algebra R(n) as studied, e.g., in [6]. In fact, it is
easy to show that the defining relations (3.2f) and (3.2g) in [6] are a consequence of the others.

7.3 Casimir elements

The first non-trivial coefficient in the expression (5.1) of Ω1,2,3 provides the Casimir element w123

of R(3), see [4]. Similarly, forΩI1,I2,I3 , it provides the Casimir element of the algebra R(I1, I2, I3).
Up to a global multiplicative constant, using the calculation made in [5], it follows that the

central element ω{1,2,3,4} provides in the limit the central element of R(n) called x1234 in [5, 6].
We note that in the Racah algebra R(n) the natural way to build central elements involving 5

and 6 indices leads to elements which were shown to be equal to zero in the algebra R(n) [6].
We do not know if and how this fact has its counterpart on our central elements ωS of aw(n).

A Details for some proofs

All along the proofs, for simplicity, we will use a notation which omits the accolades and the
symbol for union of sets, for example, as

I\a, for I\{a} and Ia or aI, for I ∪ {a}.

The last one, using Ia or aI, will not lead to any ambiguity since it will be used only when a is
adjacent to I so that CIa = CaI with our conventions.
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A.1 Proof of the morphism property for ri, ri, i = 1, . . . , n− 1

The morphism property is what remains to be done for the proof of Theorem 3.8. We need to
check that the maps ri, ri for i = 1, . . . , n − 1, given on the generators by (3.4)–(3.5) preserve
the defining relations (2.5)–(2.7) of aw(n). We will use Proposition 3.4 without mentioning.

As a first reduction, recall that ri(X
up) = (ri(X))up. Therefore, if we prove that the maps ri,

i = 1, . . . , n− 1 are morphisms, it will imply that the maps ri, i = 1, . . . , n− 1, are morphisms
as well. So we only need to deal with the maps ri.

Commutation relations. We start with the commutation relations (2.5). We take I and J
as in (2.5). There are several cases to consider.

� Assume that ri(CI) = CI and ri(CJ) = CJ . Then there is nothing to do.

� Assume that ri(CI) = CI and ri(CJ) ̸= CJ (the case with I and J exchanged is similar).
We use the action of ri given in Proposition 3.4. With notations such that {a} = J ∩
{i, i+ 1} and {a, b} = {i, i+ 1}, we must check that

[CI ,−[Ci,i+1, CJ ]q + CbCJ\a + CaCJb] = 0.

This is true since CI commutes, using the defining commutation relations, with all terms
appearing in the expression for ri(CJ).

� Assume that ri(CI) ̸= CI and ri(CJ) ̸= CJ and I ∩ J = ∅. This happens when

. . . •, •, . . . , •︸ ︷︷ ︸
I1

, a, b, •, . . . , •︸ ︷︷ ︸
I4

, •, . . . ,

with {a, b} = {i, i + 1} and I = I1a and J = bI4. Applying ri on [CI , CJ ] = 0 gives the
relation

[CbI1 , CaI4 ] = 0.

This is a particular case of relation (2.29a) proved in Lemma 2.10.

� Finally, assume that ri(CI) ̸= CI and ri(CJ) ̸= CJ and I ⊂ J = ∅. This happens when

. . . •, a, b, •, . . . , •︸ ︷︷ ︸
I3

, •, . . . , •︸ ︷︷ ︸
I4

, •, . . . ,

with {a, b} = {i, i+ 1} and I = bI3 and J = bI3I4. Applying ri on [CI , CJ ] = 0 gives the
relation:

[CaI3 , CaI3I4 ] = 0.

This is a particular case of relation (2.29b), proved in Lemma 2.10.

The remaining relations. These relations are of the form

CK = −[CI , CJ ]q + CI\JCJ\I + CI∩JCI∪J . (A.1)

We have three different situations which may happen when acting with ri. Consider the two
elements inside the q-commutator:

� The action of ri leaves both of them invariant. This happens when {i, i + 1} is disjoint
from every occurring subset. In this case, ri leaves stable every elements appearing in the
relation, and the relation is trivially preserved.
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� The action of ri only leaves one of them invariant. We will deal with these cases just
below.

� Finally, the action of ri is non-trivial on both elements. In this case, one can check that ri
leaves invariant the left hand side. These are the difficult cases. We will deal with them
one by one.

We treat the second situation. We must apply ri on a relation (A.1) and we assume that
ri(CJ) = CJ while ri acts non-trivially on CI (the other case is completely similar). There are
two possible situations: {i, i+1} ∩ J = ∅ or {i, i+1} ⊂ J . We will give the details for the first
situation, the other one can be treated in a similar way.

Let {a} = {i, i + 1} ∩ I and {a, b} = {i, i + 1}. We apply ri on the right hand side of the
relation and, according to the action of ri given in Proposition 3.4, we find

−[ri(CI), CJ ]q + ri(CI\J)CJ\I + CI∩Jri(CI∪J)

= −[Ci,i+1,−[CI , CJ ]q + CI\JCJ\I + CI∩JCI∪J ]q +XX

= −[Ci,i+1, CK ]q +XX.

For the first equality, we use the explicit action of ri and we collect the various q-commutators
appearing, using q-Jacobi. The remaining terms are collected in

XX = −[CbCI\a + CaCIb, CJ ]q +
(
CI\JaCb + CaCIb\J

)
CI\J + CI∩J

(
CbCIJ\a + CaCIJb

)
.

In every cases fitting this situation, it is straightforward to check that

−
[
CI\a, CJ

]
q
= CK\a + CI\aJCJ\I + CI∩JCIJ\a,

−[CIb, CJ ]q = CKb + CIb\JCJ\I + CI∩JCIbJ ,

and we find that XX is equal to CK\aCb + CaCKb. Comparing with the action of ri on the
left hand side of (A.1), we get ri(CK) = −[Ci,i+1, CK ]q + CK\aCb + CaCKb, which is true
(Proposition 3.4).

The remaining case of relation (2.7). From now on, we need only to treat the cases
where ri acts non-trivially on both sides of the q-commutator. For this relation, this means that
we have

. . . •, •, . . . , •︸ ︷︷ ︸
I1

, •, . . . , •, a︸ ︷︷ ︸
I2

, b, •, . . . , •︸ ︷︷ ︸
I3

, •, . . . , •︸ ︷︷ ︸
I4

, •, . . . , where {a, b} = {i, i+ 1}. (A.2)

We start with some preparations. For two disjoint connected subsets I1 and I4, consider the set
of relations

CI1I4 = −[CI1H , CHI4 ]q + CI1CI4 + CHCI1HI4 (A.3)

for any connected subset H between I1 and I4 adjacent to either I1 or I4. These relations are
satisfied, due to the defining relation (2.7) and relation (2.15a). Denote dist(I1, I4) the size of
the hole between I1 and I4.

Proposition A.1. For given I1 and I4, the relations in the set (A.3) are all equivalent mod-
ulo the commutation relations and the relations of the type (A.3) for subsets I ′1 and I ′4 with
dist(I ′1, I

′
4) < dist(I1, I4).

Proof. Assume that H is adjacent to I1. Split the hole between H and I4 into H1 and H2

according to the following picture:

. . . •, •, . . . , •︸ ︷︷ ︸
I1

, •, . . . , •︸ ︷︷ ︸
H

, •, . . . , •︸ ︷︷ ︸
H1

, •, . . . , •︸ ︷︷ ︸
H2

, •, . . . , •︸ ︷︷ ︸
I4

, •, . . . .
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Then in the right hand side of (A.3), replace CHI4 by its expression starting with [CHH2 , CH2I4 ]q,
obtained from (A.3) with I1 replaced by H. Using the q-Jacobi relation and also relation (A.3)
with I4 replaced by H2, we find that the relation (A.3) becomes

CI1I4 = −[CI1H2 , CH2I4 ]q + CI1CI4 + CH2CI1H2I4 .

This proves the proposition, since H2 was arbitrarily chosen (adjacent to I4). ■

Now we come back to the proof for the defining relation (2.7) in the situation (A.2), and we
reason by induction on dist(I1, I4) (which is at least 2). If the hole between I1 and I4 contains
strictly more than two elements, thanks to Proposition A.1 and using the induction hypothesis,
we can replace relation (2.7) by the one where I3 is replaced by a subset H either adjacent to I1
or to I4 and such that H ∩ {i, i+ 1} = ∅. This relation is trivially preserved by ri.

Finally assume that dist(I1, I4) = 2, so that I2 = {a} and I3 = {b}. The action of ri on the
relation gives

CI1I4 = −[CI1a, CaI4 ]q + CI1CI4 + CaCI1aI4 ,

where we have used Proposition 3.6 for the action of ri. This relation is proved in (2.15a).
The remaining cases of relation (2.6). Recall that the relation is

CI1I2 = −[CI2I3 , CI1I3 ]q + CI1CI2 + CI3CI1I2I3 . (A.4)

Using the definition of CI1I3 and the q-Jacobi relation, we find the equivalent form of this
relation:

CI1I2 = −[CI3I1 , CI2I3 ]q + CI1CI2 + CI3CI1I2I3 . (A.5)

Proving that (A.4) is preserved by ri is equivalent to proving that (A.5) is preserved by ri, since
we only used the commutation relations (which are already proven to be preserved by ri) to
move from one to the other.

Recall that it remains only to treat the case where ri acts non-trivially on both sides of the
q-commutator in (A.4). This happens when {i, i+1} is either {a, b} or {c, d} as pictured below

. . . •, •, . . . , •, a︸ ︷︷ ︸
I1

, b, •, . . . , •︸ ︷︷ ︸
I2

, •, •, . . . , c︸ ︷︷ ︸
I3

, d, •, . . . .

Case 1: {i, i+1} = {a, b}. We are going to reason by induction on the size of I1. So first,
assume that I1 = {a}. We denote I2 = bI ′2. Using the equivalent form (A.5), the action of ri
gives, according to Proposition 3.6:

CabI′2
= −[CI3b, CaI′2I3

]q + CbCaI′2
+ CI3CabI′2I3

.

Such a relation was proven in Lemma 2.10, relation (2.18c).
Now assume that we can split I1 into a union of two non-empty connected subsets I0 ∪ I ′1

with I ′1 adjacent to I2. Relation (A.4) reads now as

CI0I′1I2
= −[CI2I3 , CI0I′1I3

]q + CI0I′1
CI2 + CI3CI0I′1I2I3

. (A.6)

Now we are going to use the following relations:

CI0I′1I3
= −[CI2I0 , CI′1I2I3

]q + CI0CI′1I3
+ CI2CI0I′1I2I3

, (A.7)

CI3I0 = −[CI3I2 , CI2I0 ]q + CI3CI0 + CI2CI3I2I0 , (A.8)

CI0I′1
= −[CI3I2I0 , CI′1I2I3

]q + CI0CI′1
+ CI2I3CI0I′1I2I3

, (A.9)
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CI0I′1I2
= −[CI3I0 , CI1I2I3 ]q + CI0CI′1I2

+ CI3CI0I′1I2I3
, (A.10)

CI′1I2
= −[CI2I3 , CI′1I3

]q + CI′1
CI2 + CI3CI′1I2I3

. (A.11)

We use (A.7) to replace CI0I′1I3
in the q-commutator in (A.6), and use all the others to calculate

the resulting expression, and we find that the relation simply becomes

CI0I′1I2
= −[CI3I0 , CI′1I2I3

]q + CI0CI′1I2
+ CI3CI0I′1I2I3

. (A.12)

It is easy to check that the relations (A.7)–(A.11) we have been using are all valid (they are either
defining relations, or were proved in Lemma 2.7). For relations (A.7)–(A.10), the map ri leaves at
least one member of the q-commutator invariant, and thus these relations are preserved by ri (see
the beginning of the proof of the remaining relations above). The stability of (A.11) by ri is the
induction hypothesis since this is indeed (A.4) with I1 replaced by I ′1. Therefore, we have been
using relations that we know are preserved by ri to transform (A.6) into the relation (A.12).
This latter relation is trivially preserved by ri. We conclude that the relation (A.6) that we
started with is preserved by ri.

Case 2: {i, i + 1} = {c, d}. We are going to reason by induction on the size of I3. So
first, assume that I3 = {c}. Using the equivalent form (A.5), the action of ri gives, according
to Proposition 3.6 as

CI1I2 = −[CdI1 , CdI2 ]q + CI1CI2 + CdCdI2I1 .

Such a relation was proven in Lemma 2.10, relation (2.16c) (with (I1, I2, I3, I4) → (d, c, I2, I1)).
Now assume that we can split I3 into a union of two non-empty connected subsets I ′3 ∪ I4

with I ′3 adjacent to I2. Relation (A.4) reads now as

CI1I2 = −[CI2I′3I4
, CI1I′3I4

]q + CI2CI1 + CI′3I4
CI1I2I′3I4

. (A.13)

Now we are going to use the following relations:

CI1I′3I4
= −[CI1I2I4 , CI2I′3

]q + CI1I4CI′3
+ CI2CI1I2I′3I4

, (A.14)

CI′3I1
= −[CI2I′3I4

, CI1I2I4 ]q + CI1CI′3
+ CI2I4CI1I2I′3I4

, (A.15)

CI′3I4
= −[CI2I4 , CI2I′3

]q + CI4CI′3
+ CI2CI2I′3I4

, (A.16)

CI1I2I′3
= −[CI2I′3I4

, CI1I4 ]q + CI2I′3
CI1 + CI4CI1I2I′3I4

. (A.17)

We use (A.14) to replace CI0I′1I3
in the q-commutator in (A.13), and use all the others to calculate

the resulting expression, and we find that the relation simply becomes

CI1I2 = −[CI′3I1
, CI2I′3

]q + CI1CI2 + CI′3
CI1I2I′3

.

Now this final relation is trivially preserved by ri. Moreover, it is easy to check that the
relations (A.14)–(A.17) we have been using are all valid (they are either defining relations, or
were proved in Lemma 2.7). For relations (A.14)–(A.16), the map ri leaves at least one member
of the q-commutator invariant, and thus these relations are preserved by ri (see the beginning
of the proof of the remaining relations above). Finally, the stability of (A.17) is the induction
hypothesis since this is indeed (A.4) with I3 replaced by I4 (and I2 replaced by I2I

′
3). So, as in

Case 1, this concludes the verification.

A.2 Proof of Proposition 3.6 for r0

The formula to be proven is r0(CI1I2...Ik) = CHkHk−1...H1 1 when 1 ∈ I1 and I1 < I2 < . . . Ik is an
increasing sequence of connected subsets, and H1 < · · · < Hk is the complementary sequence
in {1, . . . , n}.
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We use induction on k. For k = 1, this is just the definition of r0. For k ≥ 2, we use
the definition (2.33) of CI1I2...Ik using the hole H1 between I1 and I2, and using the induction
hypothesis for the action of r0, we are led to proving

CHkHk−1...H1 1 = −[CHkIkHk−1...H2I2 1, CH1I2...Ik ]q + CHkIk...H2I2H1 1CI2...Ik

+ CH1CHkHk−1...H2,1. (A.18)

For k = 2, this reads

CH2H1 1 = −[CH2I2 1, CH1I2 ]q + CH2I2H1 1CI2 + CH1CH2,1. (A.19)

If {1} is adjacent to H1, this relation is a particular case of (2.19b). If {1} is not adjacent
to H1, the relation we know from (2.19b) is (A.19) with 1 replaced by a, the letter adjacent
to H1. Then we can apply to that relation a sequence of automorphisms, namely, r1 . . . ra−1, to
get (A.19).

Now from (A.19), we can apply a sequence of automorphisms ri to split I2 into a sequence
I ′2 < · · · < I ′k with holes, and get (A.2) in the general case. To show this, let H1 = {a, . . . , b−1}
and I2 = {b, . . . , c}. Then relation (A.19) reads

Cn...c+1,b−1...a,1 = −[Cn...b,1, Ca...b...c]q + Cn...a,1Cb...c + Ca...b−1Cn...c+1,1.

Applying rc, according to Proposition 3.6, we get

Cn...c+2,c,b−1...a,1 = −[Cn...b,1, Ca...b...c−1,c+1]q + Cn...a,1Cb...c−1,c+1 + Ca...b−1Cn...c+2,c,1.

Thus we have successfully created I ′2 = {b, . . . , c − 1}, I ′3 = {c + 1} and a hole H2 = {c} such
that I2 = I ′2I

′
3. We can reproduce this as much as we need to produce as many holes as we want

in I2.

A.3 Proof of the morphism property for r0

First, we show that r0 preserves the commutation relations (2.5). We start with the situation
where r0 acts non-trivially only on one element of the commutator, that is, with [C1...k, Ci...j ] = 0
with 1 ̸= i ≤ j. The image by r0 is [Cn...k+11, Ci...j ] = 0. This is satisfied by Lemma 2.13 since if
{i, . . . , j} is included in (resp. disjoint from) {1, . . . , k}, then is it disjoint from (resp. included
in) {n, . . . , k + 1} ∪ {1}.

Next, we consider the relation [C1...k,C1...k′ ]=0, which is sent by r0 to [Cn...k+11,Cn...k′+11]=0.
This latter relation is satisfied due to (2.29b).

Then we consider (2.6) and (2.7). As for the proof for the other ri’s, the situation where r0
leaves invariant the two elements appearing in the q-commutator is easily handled, since r0 leaves
invariant every elements appearing in the relation. When r0 leaves invariant only one element
in the q-commutator, we can apply the same reasoning as around (A.1), using the formula in
Proposition 3.4 and q-Jacobi. We omit the details since they follow the same reasoning as for
the other ri’s.

We are left with the situation where r0 acts non-trivially on the two elements appearing in
the q-commutator. This can happen only for relation (2.6), when 1 ∈ I3 (so that I3 < I2 < I1).
Here we use Proposition 3.6 to apply r0 and get

CI1I2 = −[CI0I2 1, CI0I1 1]q + CI1CI2 + CI0I1I2 1CI0 1,

where I0 is the subset adjacent to I1 and going up to n. If {1} is adjacent to I2, then this is
relation (2.19c). The general case is obtained with the same reasoning as for (A.19).
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Computer programs

We used formal calculation softwares (FORM and Maple) for some proofs done in this article:
the corresponding programs are available upon request to the authors.
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