Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 017, 19 pages      arXiv:2106.06857      https://doi.org/10.3842/SIGMA.2023.017

The Clebsch-Gordan Rule for $U(\mathfrak{sl}_2)$, the Krawtchouk Algebras and the Hamming Graphs

Hau-Wen Huang
Department of Mathematics, National Central University, Chung-Li 32001, Taiwan

Received October 03, 2022, in final form March 22, 2023; Published online April 04, 2023

Abstract
Let $D\geq 1$ and $q\geq 3$ be two integers. Let $H(D)=H(D,q)$ denote the $D$-dimensional Hamming graph over a $q$-element set. Let ${\mathcal T}(D)$ denote the Terwilliger algebra of $H(D)$. Let $V(D)$ denote the standard ${\mathcal T}(D)$-module. Let $\omega$ denote a complex scalar. We consider a unital associative algebra $\mathfrak K_\omega$ defined by generators and relations. The generators are $A$ and $B$. The relations are $A^2 B-2 ABA +B A^2 =B+\omega A$, $B^2A-2 BAB+AB^2=A+\omega B$. The algebra $\mathfrak K_\omega$ is the case of the Askey-Wilson algebras corresponding to the Krawtchouk polynomials. The algebra $\mathfrak K_\omega$ is isomorphic to ${\rm U}(\mathfrak{sl}_2)$ when $\omega^2\not=1$. We view $V(D)$ as a $\mathfrak{K}_{1-\frac{2}{q}}$-module. We apply the Clebsch-Gordan rule for ${\rm U}(\mathfrak{sl}_2)$ to decompose $V(D)$ into a direct sum of irreducible ${\mathcal T}(D)$-modules.

Key words: Clebsch-Gordan rule; Hamming graph; Krawtchouk algebra; Terwilliger algebra.

pdf (494 kb)   tex (21 kb)  

References

  1. Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Johnson graphs, arXiv:2104.11581.
  2. Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Hamming graphs, Nuclear Phys. B 986 (2023), 116061, 22 pages, arXiv:2103.15742.
  3. Curtis C.W., Reiner I., Representation theory of finite groups and associative algebras, Pure Appl. Math., Vol. 11, Interscience Publishers, New York, 1962.
  4. Gijswijt D., Schrijver A., Tanaka H., New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming, J. Combin. Theory Ser. A 113 (2006), 1719-1731.
  5. Go J.T., The Terwilliger algebra of the hypercube, European J. Combin. 23 (2002), 399-429.
  6. Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
  7. Huang H.-W., Finite-dimensional irreducible modules of the Bannai-Ito algebra at characteristic zero, Lett. Math. Phys. 110 (2020), 2519-2541, arXiv:1910.11447.
  8. Huang H.-W., Bockting-Conrad S., Finite-dimensional irreducible modules of the Racah algebra at characteristic zero, SIGMA 16 (2020), 018, 17 pages, arXiv:1910.11446.
  9. Jafarizadeh M.A., Nami S., Eghbalifam F., Entanglement entropy in the Hamming networks, arXiv:1503.04986.
  10. Kassel C., Quantum groups, Grad. Texts in Math., Vol. 155, Springer, New York, 1995.
  11. Levstein F., Maldonado C., Penazzi D., The Terwilliger algebra of a Hamming scheme $H(d,q)$, European J. Combin. 27 (2006), 1-10.
  12. Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
  13. Nomura K., Terwilliger P., Krawtchouk polynomials, the Lie algebra $\mathfrak{sl}_2$, and Leonard pairs, Linear Algebra Appl. 437 (2012), 345-375, arXiv:1201.1645.
  14. Tanabe K., The irreducible modules of the Terwilliger algebras of Doob schemes, J. Algebraic Combin. 6 (1997), 173-195.
  15. Terwilliger P., Leonard pairs and dual polynomial sequences, Unpublished manuscript, 1987, available at https://www.math.wisc.edu/ terwilli/Htmlfiles/leonardpair.pdf.
  16. Terwilliger P., The subconstituent algebra of an association scheme. I, J. Algebraic Combin. 1 (1992), 363-388.
  17. Terwilliger P., The subconstituent algebra of an association scheme. II, J. Algebraic Combin. 2 (1993), 73-103.
  18. Terwilliger P., The subconstituent algebra of an association scheme. III, J. Algebraic Combin. 2 (1993), 177-210.
  19. Terwilliger P., An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 255-330.
  20. Terwilliger P., Manila notes, 2010, available at https://people.math.wisc.edu/ terwilli/teaching.html.
  21. Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411-426, arXiv:math.QA/0305356.
  22. Vid unas R., Normalized Leonard pairs and Askey-Wilson relations, Linear Algebra Appl. 422 (2007), 39-57, arXiv:math.RA/0505041.

Previous article  Next article  Contents of Volume 19 (2023)