The Clebsch-Gordan Rule for $\boldsymbol{U}\left(\mathfrak{s l}_{2}\right)$, the Krawtchouk Algebras and the Hamming Graphs

Hau-Wen HUANG
Department of Mathematics, National Central University, Chung-Li 32001, Taiwan
E-mail: hauwenh@math.ncu.edu.tw

Received October 03, 2022, in final form March 22, 2023; Published online April 04, 2023
https://doi.org/10.3842/SIGMA.2023.017

Abstract

Let $D \geq 1$ and $q \geq 3$ be two integers. Let $H(D)=H(D, q)$ denote the D-dimensional Hamming graph over a q-element set. Let $\mathcal{T}(D)$ denote the Terwilliger algebra of $H(D)$. Let $V(D)$ denote the standard $\mathcal{T}(D)$-module. Let ω denote a complex scalar. We consider a unital associative algebra \mathfrak{K}_{ω} defined by generators and relations. The generators are A and B. The relations are $A^{2} B-2 A B A+B A^{2}=B+\omega A$, $B^{2} A-2 B A B+A B^{2}=A+\omega B$. The algebra \mathfrak{K}_{ω} is the case of the Askey-Wilson algebras corresponding to the Krawtchouk polynomials. The algebra \mathfrak{K}_{ω} is isomorphic to $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ when $\omega^{2} \neq 1$. We view $V(D)$ as a $\mathfrak{K}_{1-\frac{2}{2}}$-module. We apply the Clebsch-Gordan rule for $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ to decompose $V(D)$ into a direct sum of irreducible $\mathcal{T}(D)$-modules.

Key words: Clebsch-Gordan rule; Hamming graph; Krawtchouk algebra; Terwilliger algebra
2020 Mathematics Subject Classification: 05E30; 16G30; 16S30; 33D45

1 Introduction

Throughout this paper, we adopt the following conventions: Fix an integer $q \geq 3$. Let \mathbb{C} denote the complex number field. An algebra is meant to be a unital associative algebra. An algebra homomorphism is meant to be a unital algebra homomorphism. A subalgebra has the same unit as the parent algebra. In an algebra the commutator $[x, y]$ of two elements x and y is defined as $[x, y]=x y-y x$. Note that every algebra has a Lie algebra structure with Lie bracket given by the commutator.

Recall that $\mathfrak{s l}_{2}(\mathbb{C})$ is a three-dimensional Lie algebra over \mathbb{C} with a basis e, f, h satisfying

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h .
$$

Definition 1.1. The universal enveloping algebra $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ of $\mathfrak{s l}_{2}$ is an algebra over \mathbb{C} generated by E, F, H subject to the relations

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

Using Definition 1.1, it is straightforward to verify the following lemma:
Lemma 1.2. Given any integer $n \geq 0$ there exists an $(n+1)$-dimensional $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module L_{n} that has a basis $\left\{v_{i}\right\}_{i=0}^{n}$ such that

$$
\begin{array}{lll}
E v_{i}=(n-i+1) v_{i-1} & \text { for } i=1,2, \ldots, n, & E v_{0}=0, \\
F v_{i}=(i+1) v_{i+1} & \text { for } i=0,1, \ldots, n-1, & F v_{n}=0, \\
H v_{i}=(n-2 i) v_{i} & \text { for } i=0,1, \ldots, n . &
\end{array}
$$

Note that the $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module L_{n} is irreducible for any integer $n \geq 0$. Furthermore, the finite-dimensional irreducible $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-modules are classified as follows:

Lemma 1.3. For any integer $n \geq 0$, each $(n+1)$-dimensional irreducible $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module is isomorphic to L_{n}.

Proof. See [10, Section V.4] for example.
It is well known that the universal enveloping algebra of a Lie algebra is a Hopf algebra. For example, see [12, Section 5].

Lemma 1.4. The algebra $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ is a Hopf algebra on which the counit $\varepsilon: \mathrm{U}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathbb{C}$, the antipode $S: \mathrm{U}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathrm{U}\left(\mathfrak{s l}_{2}\right)$ and the comultiplication $\Delta: \mathrm{U}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathrm{U}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{U}\left(\mathfrak{s l}_{2}\right)$ are given by

$$
\begin{array}{lll}
\varepsilon(E)=0, & \varepsilon(F)=0, & \varepsilon(H)=0, \\
S(E)=-E, & S(F)=-F, & S(H)=-H \\
\Delta(E)=E \otimes 1+1 \otimes E, & \Delta(F)=F \otimes 1+1 \otimes F, & \Delta(H)=H \otimes 1+1 \otimes H .
\end{array}
$$

Every $\mathrm{U}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module can be viewed as a $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module via the comultiplication of $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$. The Clebsch-Gordan rule for $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ is as follows:

Theorem 1.5. For any integers $m, n \geq 0$, the $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module $L_{m} \otimes L_{n}$ is isomorphic to

$$
\bigoplus_{p=0}^{\min \{m, n\}} L_{m+n-2 p}
$$

Proof. See [10, Section V.5] for example.
For the rest of this paper, let ω denote a scalar taken from \mathbb{C}.
Definition 1.6. The Krawtchouk algebra \mathfrak{K}_{ω} is an algebra over \mathbb{C} generated by A and B subject to the relations

$$
\begin{align*}
& A^{2} B-2 A B A+B A^{2}=B+\omega A \tag{1.1}\\
& B^{2} A-2 B A B+A B^{2}=A+\omega B \tag{1.2}
\end{align*}
$$

The algebra \mathfrak{K}_{ω} is the case of the Askey-Wilson algebra corresponding to the Krawtchouk polynomials [22, Lemma 7.2]. Define C to be the following element of \mathfrak{K}_{ω} :

$$
C=[A, B]
$$

Lemma 1.7. The algebra \mathfrak{K}_{ω} has a presentation with the generators A, B, C and the relations

$$
\begin{align*}
& {[A, B]=C} \tag{1.3}\\
& {[A, C]=B+\omega A} \tag{1.4}\\
& {[C, B]=A+\omega B} \tag{1.5}
\end{align*}
$$

Proof. The relation (1.3) is immediate from the setting of C. Using (1.3), the relations (1.1) and (1.2) can be written as (1.4) and (1.5), respectively. The lemma follows.

Let \mathcal{K}_{ω} denote a three-dimensional Lie algebra over \mathbb{C} with a basis a, b, c satisfying

$$
[a, b]=c, \quad[a, c]=b+\omega a, \quad[c, b]=a+\omega b
$$

By Lemma 1.7 , the algebra \mathfrak{K}_{ω} is the universal enveloping algebra of \mathcal{K}_{ω}. There is a connection between \mathfrak{K}_{ω} and $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$:

Theorem 1.8. There exists a unique algebra homomorphism $\zeta: \mathfrak{K}_{\omega} \rightarrow \mathrm{U}\left(\mathfrak{s l}_{2}\right)$ that sends

$$
A \mapsto \frac{1+\omega}{2} E+\frac{1-\omega}{2} F-\frac{\omega}{2} H, \quad B \mapsto \frac{1}{2} H, \quad C \mapsto-\frac{1+\omega}{2} E+\frac{1-\omega}{2} F .
$$

Moreover, if $\omega^{2} \neq 1$, then ζ is an isomorphism and its inverse sends

$$
E \mapsto \frac{1}{1+\omega} A+\frac{\omega}{1+\omega} B-\frac{1}{1+\omega} C, \quad F \mapsto \frac{1}{1-\omega} A+\frac{\omega}{1-\omega} B+\frac{1}{1-\omega} C, \quad H \mapsto 2 B .
$$

Proof. It is routine to verify the result by using Definition 1.1 and Lemma 1.7. Here we provide another proof by applying [13, Lemmas 2.12 and 2.13].

Let $\sigma: \mathfrak{s l}_{2}(\mathbb{C}) \rightarrow \mathrm{U}\left(\mathfrak{s l}_{2}\right)$ denote the canonical Lie algebra homomorphism that sends e, f, h to E, F, H, respectively. Let $\tau: \mathcal{K}_{\omega} \rightarrow \mathfrak{K}_{\omega}$ denote the canonical Lie algebra homomorphism that sends a, b, c to A, B, C, respectively. By [13, Lemma 2.12], there exists a unique Lie algebra homomorphism $\phi: \mathcal{K}_{\omega} \rightarrow \mathfrak{s l}_{2}(\mathbb{C})$ that sends

$$
a \mapsto \frac{1+\omega}{2} e+\frac{1-\omega}{2} f-\frac{\omega}{2} h, \quad b \mapsto \frac{1}{2} h, \quad c \mapsto-\frac{1+\omega}{2} e+\frac{1-\omega}{2} f .
$$

Applying the universal property of \mathfrak{K}_{ω} to the Lie algebra homomorphism $\sigma \circ \phi$, this gives the algebra homomorphism ζ. Suppose that $\omega^{2} \neq 1$. Then $\phi: \mathcal{K}_{\omega} \rightarrow \mathfrak{s l}_{2}(\mathbb{C})$ is a Lie algebra isomorphism by [13, Lemma 2.13]. Applying the universal property of $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ to the Lie algebra homomorphism $\tau \circ \phi^{-1}$, this gives the inverse of ζ.

In this paper, we relate the above algebraic results to the Hamming graphs. We now recall the definition of Hamming graphs. Let X denote a q-element set and let D be a positive integer. The D-dimensional Hamming graph $H(D)=H(D, q)$ over X is a simple graph whose vertex set is X^{D} and $x, y \in X^{D}$ are adjacent if and only if x, y differ in exactly one coordinate. Let ∂ denote the path-length distance function for $H(D)$. Let $\mathrm{Mat}_{X^{D}}(\mathbb{C})$ stand for the algebra consisting of the square matrices over \mathbb{C} indexed by X^{D}.

The adjacency matrix $\mathbf{A}(D) \in \operatorname{Mat}_{X^{D}}(\mathbb{C})$ of $H(D)$ is the 0-1 matrix such that

$$
\mathbf{A}(D)_{x y}=1 \quad \text { if and only if } \quad \partial(x, y)=1
$$

for all $x, y \in X^{D}$. Fix a vertex $x \in X^{D}$. The dual adjacency matrix $\mathbf{A}^{*}(D) \in \operatorname{Mat}_{X^{D}}(\mathbb{C})$ of $H(D)$ with respect to x is a diagonal matrix given by

$$
\mathbf{A}^{*}(D)_{y y}=D(q-1)-q \cdot \partial(x, y)
$$

for all $y \in X^{D}$. The Terwilliger algebra $\mathcal{T}(D)$ of $H(D)$ with respect to x is the subalgebra of $\operatorname{Mat}_{X^{D}}(\mathbb{C})$ generated by $\mathbf{A}(D)$ and $\mathbf{A}^{*}(D)[16,17,18]$. Let $V(D)$ denote the vector space consisting of all column vectors over \mathbb{C} indexed by X^{D}. The vector space $V(D)$ has a natural $\mathcal{T}(D)$-module structure and it is called the standard $\mathcal{T}(D)$-module.

In [18], Terwilliger employed the endpoints, dual endpoints, diameters and auxiliary parameters to describe the irreducible modules for the known families of thin Q-polynomial distanceregular graphs with unbounded diameter. In [14], Tanabe gave a recursive construction of irreducible modules for the Doob graphs and his method can be adjusted to the case of $H(D)$. In [5], Go gave a decomposition of the standard module for the hypercube. In [4], Gijswijt, Schrijver and Tanaka described a decomposition of $V(D)$ in terms of the block-diagonalization of $\mathcal{T}(D)$. In [11], Levstein, Maldonado and Penazzi applied the representation theory of $\mathrm{GL}_{2}(\mathbb{C})$ to determine the structure of $\mathcal{T}(D)$. In $[20]$, it was shown that $V(D)$ can be viewed as a $\mathfrak{g l}_{2}(\mathbb{C})$ module as well as a $\mathfrak{s l}_{2}(\mathbb{C})$-module. In [2], Bernard, Crampé, and Vinet found a decomposition of $V(D)$ by generalizing the result on the hypercube.

In this paper, we view $V(D)$ as a $\mathfrak{K}_{1-\frac{2}{q}}$-module as well as a $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module in light of Theorem 1.8. Subsequently, we apply Theorem 1.5 to prove the following results:

Proposition 1.9. Let D be a positive integer. For any integers p and k with $0 \leq p \leq D$ and $0 \leq k \leq\left\lfloor\frac{p}{2}\right\rfloor$, there exists a $(p-2 k+1)$-dimensional irreducible $\mathcal{T}(D)$-module $L_{p, k}(D)$ satisfying the following conditions:
(i) There exists a basis for $L_{p, k}(D)$ with respect to which the matrices representing $\mathbf{A}(D)$ and $\mathbf{A}^{*}(D)$ are

$$
\left(\begin{array}{ccccc}
\alpha_{0} & \gamma_{1} & & & \mathbf{0} \\
\beta_{0} & \alpha_{1} & \gamma_{2} & & \\
& \beta_{1} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \gamma_{p-2 k} \\
\mathbf{0} & & & \beta_{p-2 k-1} & \alpha_{p-2 k}
\end{array}\right), \quad\left(\begin{array}{ccccc}
\theta_{0} & & & & \mathbf{0} \\
& \theta_{1} & & & \\
& & \theta_{2} & & \\
& & & \ddots & \\
\mathbf{0} & & & & \theta_{p-2 k}
\end{array}\right)
$$

respectively.
(ii) There exists a basis for $L_{p, k}(D)$ with respect to which the matrices representing $\mathbf{A}(D)$ and $\mathbf{A}^{*}(D)$ are

$$
\left(\begin{array}{ccccc}
\theta_{0} & & & & \mathbf{0} \\
& \theta_{1} & & & \\
& & \theta_{2} & & \\
& & & \ddots & \\
\mathbf{0} & & & & \theta_{p-2 k}
\end{array}\right), \quad\left(\begin{array}{ccccc}
\alpha_{0} & \gamma_{1} & & & \mathbf{0} \\
\beta_{0} & \alpha_{1} & \gamma_{2} & & \\
& \beta_{1} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \gamma_{p-2 k} \\
\mathbf{0} & & & \beta_{p-2 k-1} & \alpha_{p-2 k}
\end{array}\right)
$$

respectively.
Here the parameters $\left\{\alpha_{i}\right\}_{i=0}^{p-2 k},\left\{\beta_{i}\right\}_{i=0}^{p-2 k-1},\left\{\gamma_{i}\right\}_{i=1}^{p-2 k},\left\{\theta_{i}\right\}_{i=0}^{p-2 k}$ are as follows:

$$
\begin{array}{ll}
\alpha_{i}=(q-2)(i+k)+p-D & \text { for } i=0,1, \ldots, p-2 k, \\
\beta_{i}=i+1 & \text { for } i=0,1, \ldots, p-2 k-1, \\
\gamma_{i}=(q-1)(p-i-2 k+1) & \text { for } i=1,2, \ldots, p-2 k \\
\theta_{i}=q(p-i-k)-D & \text { for } i=0,1, \ldots, p-2 k .
\end{array}
$$

Given a vector space W and a positive integer p, we let

$$
p \cdot W=\underbrace{W \oplus W \oplus \cdots \oplus W}_{p \text { copies of } W} .
$$

Theorem 1.10. Let D be a positive integer. Then the standard $\mathcal{T}(D)$-module $V(D)$ is isomorphic to

$$
\bigoplus_{p=0}^{D} \bigoplus_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor} \frac{p-2 k+1}{p-k+1}\binom{D}{p}\binom{p}{k}(q-2)^{D-p} \cdot L_{p, k}(D) .
$$

The algebra $\mathcal{T}(D)$ is a finite-dimensional semisimple algebra. Following from [3, Theorem 25.10], Theorem 1.10 implies the following classification of irreducible $\mathcal{T}(D)$-modules:
Theorem 1.11. Let D be a positive integer. Let $\mathbf{P}(D)$ denote the set consisting of all pairs (p, k) of integers with $0 \leq p \leq D$ and $0 \leq k \leq\left\lfloor\frac{p}{2}\right\rfloor$. Let $\mathbf{M}(D)$ denote the set of all isomorphism classes of irreducible $\mathcal{T}(D)$-modules. Then there exists a bijection $\mathcal{E}: \mathbf{P}(D) \rightarrow \mathbf{M}(D)$ given by

$$
(p, k) \mapsto \text { the isomorphism class of } L_{p, k}(D)
$$

for all $(p, k) \in \mathbf{P}(D)$.
The paper is organized as follows: In Section 2 , we give the preliminaries on the algebra \mathfrak{K}_{ω}. In Section 3, we prove Proposition 1.9 and Theorems 1.10, 1.11 by using Theorem 1.5. In Appendix A, we give the equivalent statements of Proposition 1.9 and Theorems 1.10, 1.11.

2 The Krawtchouk algebra

2.1 Finite-dimensional irreducible $\mathfrak{K}_{\boldsymbol{\omega}}$-modules

Recall the $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module L_{n} from Lemma 1.2. Recall the algebra homomorphism $\zeta: \mathfrak{K}_{\omega} \rightarrow$ $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ form Theorem 1.8. Each $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module can be viewed as a \mathfrak{K}_{ω}-module by pulling back via ζ. We express the $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$-module L_{n} as a \mathfrak{K}_{ω}-module as follows:

Lemma 2.1. For any integer $n \geq 0$, the matrices representing A, B, C with respect to the basis $\left\{v_{i}\right\}_{i=0}^{n}$ for the \mathfrak{K}_{ω}-module L_{n} are

$$
\left(\begin{array}{ccccc}
\alpha_{0} & \gamma_{1} & & & \mathbf{0} \\
\beta_{0} & \alpha_{1} & \gamma_{2} & & \\
& \beta_{1} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \gamma_{n} \\
\mathbf{0} & & & \beta_{n-1} & \alpha_{n}
\end{array}\right), \quad\left(\begin{array}{lllll}
\theta_{0} & & & & \mathbf{0} \\
& \theta_{1} & & & \\
& & \theta_{2} & & \\
& & & \ddots & \\
\mathbf{0} & & & & \theta_{n}
\end{array}\right), \quad\left(\begin{array}{ccccc}
0 & -\gamma_{1} & & & \mathbf{0} \\
\beta_{0} & 0 & -\gamma_{2} & & \\
& \beta_{1} & 0 & \ddots & \\
& & \ddots & \ddots & -\gamma_{n} \\
\mathbf{0} & & & \beta_{n-1} & 0
\end{array}\right)
$$

respectively, where

$$
\begin{array}{ll}
\alpha_{i}=\frac{(2 i-n) \omega}{2} & \text { for } i=0,1, \ldots, n, \\
\beta_{i}=\frac{(i+1)(1-\omega)}{2} & \text { for } i=0,1, \ldots, n-1, \\
\gamma_{i}=\frac{(n-i+1)(1+\omega)}{2} & \text { for } i=1,2, \ldots, n, \\
\theta_{i}=\frac{n}{2}-i & \text { for } i=0,1, \ldots, n .
\end{array}
$$

The finite-dimensional irreducible \mathfrak{K}_{ω}-modules are classified as follows:

Theorem 2.2.

(i) If $\omega=-1$, then any finite-dimensional irreducible \mathfrak{K}_{ω}-module V is of dimension one and there is a scalar $\mu \in \mathbb{C}$ such that $A v=\mu v, B v=\mu v$ for all $v \in V$.
(ii) If $\omega=1$, then any finite-dimensional irreducible \mathfrak{K}_{ω}-module V is of dimension one and there is a scalar $\mu \in \mathbb{C}$ such that $A v=\mu v, B v=-\mu v$ for all $v \in V$.
(iii) If $\omega^{2} \neq 1$, then L_{n} is the unique $(n+1)$-dimensional irreducible \mathfrak{K}_{ω}-module up to isomorphism for every integer $n \geq 0$.

Proof. (i) Let $n \geq 0$ be an integer. Let V denote an $(n+1)$-dimensional irreducible \mathfrak{K}_{-1} module. Since the trace of the left-hand side of (1.1) on V is zero, the elements A and B have the same trace on V. If $n=0$ then there exists a scalar $\mu \in \mathbb{C}$ such that $A v=B v=\mu v$ for all $v \in V$.

To see Theorem 2.2(i), it remains to assume that $n \geq 1$ and we seek a contradiction. Applying the method proposed in $[6,7,8]$, there exists a basis $\left\{u_{i}\right\}_{i=0}^{n}$ for V with respect to which the matrices representing A and B are of the forms

$$
\left(\begin{array}{ccccc}
\theta_{0} & & & & \mathbf{0} \\
1 & \theta_{1} & & & \\
& 1 & \theta_{2} & & \\
& & \ddots & \ddots & \\
\mathbf{0} & & & 1 & \theta_{n}
\end{array}\right), \quad\left(\begin{array}{ccccc}
\theta_{0} & \varphi_{1} & & & \mathbf{0} \\
& \theta_{1} & \varphi_{2} & & \\
& & \theta_{2} & \ddots & \\
& & & \ddots & \varphi_{n} \\
\mathbf{0} & & & & \theta_{n}
\end{array}\right),
$$

respectively. Here $\left\{\theta_{i}\right\}_{i=0}^{n}$ is an arithmetic sequence with common difference -1 and the sequence $\left\{\varphi_{i}\right\}_{i=1}^{n}$ satisfies $\varphi_{i-1}-2 \varphi_{i}+\varphi_{i+1}=0,1 \leq i \leq n$, where φ_{0} and φ_{n+1} are interpreted as zero. Solving the above recurrence yields that $\varphi_{i}=0$ for all $i=1,2, \ldots, n$. Thus the subspace of V spanned by $\left\{u_{i}\right\}_{i=1}^{n}$ is a nonzero \mathfrak{K}_{-1}-module, which is a contradiction to the irreducibility of V.
(ii) Using Definition 1.6, it is routine to verify that there exists a unique algebra isomorphism $\mathfrak{K}_{-1} \rightarrow \mathfrak{K}_{1}$ that sends A to A and B to $-B$. Theorem 2.2(ii) follows from Theorem 2.2(i) and the above isomorphism.
(iii) Theorem 2.2(iii) follows immediate from Lemma 1.3 and Theorem 1.8.

Lemma 2.3. There exists a unique algebra automorphism of \mathfrak{K}_{ω} that sends $A \mapsto B, B \mapsto A$, $C \mapsto-C$.

Proof. It is routine to verify the lemma by using Lemma 1.7.
Lemma 2.4. Suppose that $\omega^{2} \neq 1$. For any integer $n \geq 0$, there exists a basis for the \mathfrak{K}_{ω}-module L_{n} with respect to which the matrices representing A, B, C are

$$
\left(\begin{array}{ccccc}
\theta_{0} & & & & \mathbf{0} \\
& \theta_{1} & & & \\
& & \theta_{2} & & \\
& & & \ddots & \\
\mathbf{0} & & & & \theta_{n}
\end{array}\right), \quad\left(\begin{array}{ccccc}
\alpha_{0} & \gamma_{1} & & & \mathbf{0} \\
\beta_{0} & \alpha_{1} & \gamma_{2} & & \\
& \beta_{1} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \gamma_{n} \\
\mathbf{0} & & & \beta_{n-1} & \alpha_{n}
\end{array}\right), \quad\left(\begin{array}{ccccc}
0 & \gamma_{1} & & & \mathbf{0} \\
-\beta_{0} & 0 & \gamma_{2} & & \\
& -\beta_{1} & 0 & \ddots & \\
& & \ddots & \ddots & \gamma_{n} \\
\mathbf{0} & & & -\beta_{n-1} & 0
\end{array}\right)
$$

respectively, where

$$
\begin{array}{ll}
\alpha_{i}=\frac{(2 i-n) \omega}{2} & \text { for } i=0,1, \ldots, n, \\
\beta_{i}=\frac{(i+1)(1-\omega)}{2} & \text { for } i=0,1, \ldots, n-1, \\
\gamma_{i}=\frac{(n-i+1)(1+\omega)}{2} & \text { for } i=1,2, \ldots, n, \\
\theta_{i}=\frac{n}{2}-i & \text { for } i=0,1, \ldots, n .
\end{array}
$$

Proof. Let L_{n}^{\prime} denote the irreducible \mathfrak{K}_{ω}-module obtained by twisting the \mathfrak{K}_{ω}-module L_{n} via the automorphism of \mathfrak{K}_{ω} given in Lemma 2.3. Recall the basis $\left\{v_{i}\right\}_{i=0}^{n}$ for L_{n} from Lemma 2.1. Observe that the three matrices described in Lemma 2.4 are the matrices representing A, B, C with respect to the basis $\left\{v_{i}\right\}_{i=0}^{n}$ for the \mathfrak{K}_{ω}-module L_{n}^{\prime}. By Theorem 2.2(iii), the \mathfrak{K}_{ω}-module L_{n}^{\prime} is isomorphic to L_{n}. The lemma follows.

Leonard pairs were introduced in $[15,19,21]$ by P. Terwilliger. Suppose that $\omega^{2} \neq 1$. By Lemmas 2.1 and 2.4, the elements A and B act on the \mathfrak{K}_{ω}-module L_{n} as a Leonard pair. The result was first stated in [13, Theorem 6.3].

2.2 The Krawtchouk algebra as a Hopf algebra

Let \mathcal{H} denote an algebra. Recall that \mathcal{H} is called a Hopf algebra if there are two algebra homomorphisms $\varepsilon: \mathcal{H} \rightarrow \mathbb{C}, \Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$ and a linear map $S: \mathcal{H} \rightarrow \mathcal{H}$ that satisfy the following properties:
$(\mathrm{H} 1)(1 \otimes \Delta) \circ \Delta=(\Delta \otimes 1) \circ \Delta$,
$(\mathrm{H} 2) m \circ(1 \otimes(\iota \circ \varepsilon)) \circ \Delta=m \circ((\iota \circ \varepsilon) \otimes 1) \circ \Delta=1$,
(H3) $m \circ(1 \otimes S) \circ \Delta=m \circ(S \otimes 1) \circ \Delta=\iota \circ \varepsilon$.

Here $m: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$ is the multiplication map and $\iota: \mathbb{C} \rightarrow \mathcal{H}$ is the unit map defined by $\iota(c)=c 1$ for all $c \in \mathbb{C}$. Note that m is a linear map and ι is an algebra homomorphism.

Suppose that (H1)-(H3) hold. Then the maps ε, Δ, S are called the counit, comultiplication and antipode of \mathcal{H}, respectively. Let n be a positive integer. The n-fold comultiplication of \mathcal{H} is the algebra homomorphism $\Delta_{n}: \mathcal{H} \rightarrow \mathcal{H}^{\otimes(n+1)}$ inductively defined by

$$
\Delta_{n}=\left(1^{\otimes(n-1)} \otimes \Delta\right) \circ \Delta_{n-1} .
$$

Here Δ_{0} is interpreted as the identity map of \mathcal{H}. We may regard every $\mathcal{H}^{\otimes(n+1)}$-module as an \mathcal{H}-module by pulling back via Δ_{n}. Note that

$$
\begin{equation*}
\Delta_{n}=\left(1^{\otimes(n-i)} \otimes \Delta \otimes 1^{\otimes(i-1)}\right) \circ \Delta_{n-1} \quad \text { for all } i=1,2, \ldots, n . \tag{2.1}
\end{equation*}
$$

It follows from (2.1) that

$$
\begin{equation*}
\Delta_{n}=\left(\Delta_{n-1} \otimes 1\right) \circ \Delta=\left(1 \otimes \Delta_{n-1}\right) \circ \Delta . \tag{2.2}
\end{equation*}
$$

Recall from Section 1 that \mathfrak{K}_{ω} is the universal enveloping algebra of \mathcal{K}_{ω}. Hence \mathfrak{K}_{ω} is a Hopf algebra. For the reader's convenience, we give a detailed verification for the Hopf algebra structure of \mathfrak{K}_{ω}. By an algebra antihomomorphism, we mean a unital algebra antihomomorphism.

Lemma 2.5.

(i) There exists a unique algebra homomorphism $\varepsilon: \mathfrak{K}_{\omega} \rightarrow \mathbb{C}$ given by

$$
\varepsilon(A)=0, \quad \varepsilon(B)=0, \quad \varepsilon(C)=0 .
$$

(ii) There exists a unique algebra homomorphism $\Delta: \mathfrak{K}_{\omega} \rightarrow \mathfrak{K}_{\omega} \otimes \mathfrak{K}_{\omega}$ given by

$$
\Delta(A)=A \otimes 1+1 \otimes A, \quad \Delta(B)=B \otimes 1+1 \otimes B, \quad \Delta(C)=C \otimes 1+1 \otimes C .
$$

(iii) There exists a unique algebra antihomomorphism $S: \mathfrak{K}_{\omega} \rightarrow \mathfrak{K}_{\omega}$ given by

$$
S(A)=-A, \quad S(B)=-B, \quad S(C)=-C .
$$

(iv) The algebra \mathfrak{K}_{ω} is a Hopf algebra on which the counit, comultiplication and antipode are the above maps ε, Δ, S, respectively.

Proof. (i)-(iii) It is routine to verify Lemma 2.5(i)-(iii) by using Definition 1.6.
(iv) Using Lemma 2.5(ii), it yields that $(1 \otimes \Delta) \circ \Delta$ and $(\Delta \otimes 1) \circ \Delta$ agree at the generators A, B, C of \mathfrak{K}_{ω}. Since Δ is an algebra homomorphism, the maps $(1 \otimes \Delta) \circ \Delta$ and $(\Delta \otimes 1) \circ \Delta$ are algebra homomorphisms. Hence (H1) holds for \mathfrak{K}_{ω}.

Let $k=m \circ(1 \otimes(\iota \circ \varepsilon)) \circ \Delta$ and $k^{\prime}=m \circ((\iota \circ \varepsilon) \otimes 1) \circ \Delta$. Evidently, k and k^{\prime} are linear maps. Using Lemma 2.5(i), (ii) yields that

$$
k(1)=k^{\prime}(1)=1, \quad k(A)=k^{\prime}(A)=A, \quad k(B)=k^{\prime}(B)=B, \quad k(C)=k^{\prime}(C)=C .
$$

Let x, y be any two elements of \mathfrak{K}_{ω}. To see that $k=1$ it remains to check that $k(x y)=k(x) k(y)$. We can write

$$
\begin{align*}
& \Delta(x)=\sum_{i=1}^{n} x_{i}^{(1)} \otimes x_{i}^{(2)}, \tag{2.3}\\
& \Delta(y)=\sum_{i=1}^{n} y_{i}^{(1)} \otimes y_{i}^{(2)}, \tag{2.4}
\end{align*}
$$

where $n \geq 1$ is an integer and $x_{i}^{(1)}, x_{i}^{(2)}, y_{i}^{(1)}, y_{i}^{(2)} \in \mathfrak{K}_{\omega}$ for $1 \leq i \leq n$. Then

$$
k(x y)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{(1)} \cdot y_{j}^{(1)} \cdot(\iota \circ \varepsilon)\left(x_{i}^{(2)}\right) \cdot(\iota \circ \varepsilon)\left(y_{j}^{(2)}\right)
$$

Since each of $(\iota \circ \varepsilon)\left(x_{i}^{(2)}\right)$ and $(\iota \circ \varepsilon)\left(y_{j}^{(2)}\right)$ is a scalar multiple of 1 , it follows that

$$
k(x y)=\left(\sum_{i=1}^{n} x_{i}^{(1)} \cdot(\iota \circ \varepsilon)\left(x_{i}^{(2)}\right)\right)\left(\sum_{j=1}^{n} y_{j}^{(1)} \cdot(\iota \circ \varepsilon)\left(y_{j}^{(2)}\right)\right)=k(x) k(y) .
$$

By a similar argument, one may show that $k^{\prime}=1$. Hence (H2) holds for \mathfrak{K}_{ω}.
Let $h=m \circ(1 \otimes S) \circ \Delta$ and $h^{\prime}=m \circ(S \otimes 1) \circ \Delta$. Evidently, h and h^{\prime} are linear maps. Using Lemma 2.5(ii), (iii) yields that

$$
\begin{array}{ll}
h(1)=h^{\prime}(1)=(\iota \circ \varepsilon)(1)=1, & h(A)=h^{\prime}(A)=(\iota \circ \varepsilon)(A)=0, \\
h(B)=h^{\prime}(B)=(\iota \circ \varepsilon)(B)=0, & h(C)=h^{\prime}(C)=(\iota \circ \varepsilon)(C)=0 .
\end{array}
$$

Let x, y be any two elements of \mathfrak{K}_{ω} and suppose that $h(x)=(\iota \circ \varepsilon)(x)$ and $h(y)=(\iota \circ \varepsilon)(y)$. To see that $h=\iota \circ \varepsilon$, it suffices to check that $h(x y)=h(x) h(y)$. Applying (2.3) and (2.4), one finds that

$$
h(x y)=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{(1)} y_{j}^{(1)} S\left(x_{i}^{(2)} y_{j}^{(2)}\right) .
$$

Using the antihomomorphism property of S, we obtain

$$
\begin{aligned}
h(x y) & =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i}^{(1)} y_{j}^{(1)} S\left(y_{j}^{(2)}\right) S\left(x_{i}^{(2)}\right)=\sum_{i=1}^{n} x_{i}^{(1)}\left(\sum_{j=1}^{n} y_{j}^{(1)} S\left(y_{j}^{(2)}\right)\right) S\left(x_{i}^{(2)}\right) \\
& =\sum_{i=1}^{n} x_{i}^{(1)} h(y) S\left(x_{i}^{(2)}\right) .
\end{aligned}
$$

Since $h(y)=(\iota \circ \varepsilon)(y)$ is a scalar multiple of 1 , it follows that

$$
h(x y)=\sum_{i=1}^{n} x_{i}^{(1)} S\left(x_{i}^{(2)}\right) h(y)=h(x) h(y) .
$$

By a similar argument, one can show that $h^{\prime}=\iota \circ \varepsilon$. Hence (H3) holds for \mathfrak{K}_{ω}. The result follows.

Theorem 2.6. For any integers $m, n \geq 0$, the \mathfrak{K}_{ω}-module $L_{m} \otimes L_{n}$ is isomorphic to

$$
\bigoplus_{p=0}^{\min \{m, n\}} L_{m+n-2 p}
$$

Proof. By Lemmas 1.4 and 2.5 along with Theorem 1.8 the following diagram commutes:

Here $\Delta: \mathrm{U}\left(\mathfrak{s l}_{2}\right) \rightarrow \mathrm{U}\left(\mathfrak{s l}_{2}\right) \otimes \mathrm{U}\left(\mathfrak{s l}_{2}\right)$ is the comultiplication of $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ from Lemma 1.4 and $\Delta: \mathfrak{K}_{\omega} \rightarrow$ $\mathfrak{K}_{\omega} \otimes \mathfrak{K}_{\omega}$ is the comultiplication of \mathfrak{K}_{ω} from Lemma 2.5(ii). Combined with Theorem 1.5, the result follows.

For the rest of this paper, the notation Δ will refer to the map from Lemma 2.5(ii) and Δ_{n} will stand for the corresponding n-fold comultiplication of \mathfrak{K}_{ω} for every positive integer n.

3 The Clebsch-Gordan rule for $\mathrm{U}\left(\mathfrak{s l}_{2}\right)$ and the Hamming graph $H(D, q)$

3.1 Preliminaries on distance-regular graphs

Let Γ denote a finite simple connected graph with vertex set $X \neq \varnothing$. Let ∂ denote the pathlength distance function for Γ. Recall that the diameter D of Γ is defined by

$$
D=\max _{x, y \in X} \partial(x, y)
$$

Given any $x \in X$ let

$$
\Gamma_{i}(x)=\{y \in X \mid \partial(x, y)=i\} \quad \text { for } i=0,1, \ldots, D .
$$

For short, we abbreviate $\Gamma(x)=\Gamma_{1}(x)$. We call Γ distance-regular whenever for all $h, i, j \in$ $\{0,1, \ldots, D\}$ and all $x, y \in X$ with $\partial(x, y)=h$ the number $\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|$ is independent of x and y. If Γ is distance-regular, the numbers a_{i}, b_{i}, c_{i} for all $i=0,1, \ldots, D$ defined by

$$
a_{i}=\left|\Gamma_{i}(x) \cap \Gamma(y)\right|, \quad b_{i}=\left|\Gamma_{i+1}(x) \cap \Gamma(y)\right|, \quad c_{i}=\left|\Gamma_{i-1}(x) \cap \Gamma(y)\right|
$$

for any $x, y \in X$ with $\partial(x, y)=i$ are called the intersection numbers of Γ. Here $\Gamma_{-1}(x)$ and $\Gamma_{D+1}(x)$ are interpreted as the empty set.

We now assume that Γ is distance-regular. Let $\operatorname{Mat}_{X}(\mathbb{C})$ be the algebra consisting of the complex square matrices indexed by X. For all $i=0,1, \ldots, D$ the $i^{\text {th }}$ distance matrix $\mathbf{A}_{i} \in$ $\operatorname{Mat}_{X}(\mathbb{C})$ is defined by

$$
\left(\mathbf{A}_{i}\right)_{x y}= \begin{cases}1 & \text { if } \partial(x, y)=i \\ 0 & \text { if } \partial(x, y) \neq i\end{cases}
$$

for all $x, y \in X$. The Bose-Mesner algebra \mathcal{M} of Γ is the subalgebra of Mat ${ }_{X}(\mathbb{C})$ generated by \mathbf{A}_{i} for all $i=0,1, \ldots, D$. Note that the adjacency matrix $\mathbf{A}=\mathbf{A}_{1}$ of Γ generates \mathcal{M} and the matrices $\left\{\mathbf{A}_{i}\right\}_{i=0}^{D}$ form a basis for \mathcal{M}.

Since \mathbf{A} is real symmetric and $\operatorname{dim} \mathcal{M}=D+1$, it follows that \mathbf{A} has $D+1$ mutually distinct real eigenvalues $\theta_{0}, \theta_{1}, \ldots, \theta_{D}$. Set $\theta_{0}=b_{0}$ which is the valency of Γ. There exist unique $\mathbf{E}_{0}, \mathbf{E}_{1}, \ldots, \mathbf{E}_{D} \in \mathcal{M}$ such that

$$
\sum_{i=0}^{D} \mathbf{E}_{i}=\mathbf{I} \quad \text { (the identity matrix) }, \quad \mathbf{A E} \mathbf{E}_{i}=\theta_{i} \mathbf{E}_{i} \quad \text { for all } i=0,1, \ldots, D
$$

The matrices $\left\{\mathbf{E}_{i}\right\}_{i=0}^{D}$ form another basis for \mathcal{M}, and \mathbf{E}_{i} is called the primitive idempotent of Γ associated with θ_{i} for $i=0,1, \ldots, D$.

Observe that \mathcal{M} is closed under the Hadamard product \odot. The distance-regular graph Γ is said to be Q-polynomial with respect to the ordering $\left\{\mathbf{E}_{i}\right\}_{i=0}^{D}$ if there are scalars $a_{i}^{*}, b_{i}^{*}, c_{i}^{*}$ for all $i=0,1, \ldots, D$ such that $b_{D}^{*}=c_{0}^{*}=0, b_{i-1}^{*} c_{i}^{*} \neq 0$ for all $i=1,2, \ldots, D$ and

$$
\mathbf{E}_{1} \odot \mathbf{E}_{i}=\frac{1}{|X|}\left(b_{i-1}^{*} \mathbf{E}_{i-1}+a_{i}^{*} \mathbf{E}_{i}+c_{i+1}^{*} \mathbf{E}_{i+1}\right) \quad \text { for all } i=0,1, \ldots, D
$$

where we interpret b_{-1}^{*}, c_{D+1}^{*} as any scalars in \mathbb{C} and $\mathbf{E}_{-1}, \mathbf{E}_{D+1}$ as the zero matrix in $\operatorname{Mat}_{X}(\mathbb{C})$.

We now assume that Γ is Q-polynomial with respect to $\left\{\mathbf{E}_{i}\right\}_{i=0}^{D}$ and fix $x \in X$. For all $i=0,1, \ldots, D$ let $\mathbf{E}_{i}^{*}=\mathbf{E}_{i}^{*}(x)$ denote the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ defined by

$$
\left(\mathbf{E}_{i}^{*}\right)_{y y}= \begin{cases}1 & \text { if } \partial(x, y)=i \tag{3.1}\\ 0 & \text { if } \partial(x, y) \neq i\end{cases}
$$

for all $y \in X$. The matrix \mathbf{E}_{i}^{*} is called the $i^{\text {th }}$ dual primitive idempotent of Γ with respect to x. The dual Bose-Mesner algebra $\mathcal{M}^{*}=\mathcal{M}^{*}(x)$ of Γ with respect to x is the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by \mathbf{E}_{i}^{*} for all $i=0,1, \ldots, D$. Since $\mathbf{E}_{i}^{*} \mathbf{E}_{j}^{*}=\delta_{i j} \mathbf{E}_{i}^{*}$ the matrices $\left\{\mathbf{E}_{i}^{*}\right\}_{i=0}^{D}$ form a basis for \mathcal{M}^{*}. For all $i=0,1, \ldots, D$ the $i^{\text {th }}$ dual distance matrix $\mathbf{A}_{i}^{*}=\mathbf{A}_{i}^{*}(x)$ is the diagonal matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ defined by

$$
\begin{equation*}
\left(\mathbf{A}_{i}^{*}\right)_{y y}=|X|\left(\mathbf{E}_{i}\right)_{x y} \quad \text { for all } y \in X . \tag{3.2}
\end{equation*}
$$

The matrices $\left\{\mathbf{A}_{i}^{*}\right\}_{i=0}^{D}$ form another basis for \mathcal{M}^{*}. Note that $\mathbf{A}^{*}=\mathbf{A}_{1}^{*}$ is called the dual adjacency matrix of Γ with respect to x and \mathbf{A}^{*} generates \mathcal{M}^{*} [16, Lemma 3.11].

The Terwilliger algebra \mathcal{T} of Γ with respect to x is the subalgebra of $\operatorname{Mat}_{X}(\mathbb{C})$ generated by \mathcal{M} and $\mathcal{M}^{*}[16$, Definition 3.3]. The vector space consisting of all complex column vectors indexed by X is a natural \mathcal{T}-module and it is called the standard \mathcal{T}-module [16, p. 368]. Since the algebra \mathcal{T} is finite-dimensional, the irreducible \mathcal{T}-modules are finite-dimensional. Since the algebra \mathcal{T} is closed under the conjugate-transpose map, it follows that \mathcal{T} is semisimple. Hence the algebra \mathcal{T} is isomorphic to

$$
\bigoplus \quad \operatorname{End}(W)
$$

irreducible \mathcal{T}-modules W
where the direct sum is over all non-isomorphic irreducible \mathcal{T}-modules W. Since the standard \mathcal{T}-module is faithful, all irreducible \mathcal{T}-modules are contained in the standard \mathcal{T}-module up to isomorphism.

Let W denote an irreducible \mathcal{T}-module. The number $\min _{0 \leq i \leq D}\left\{i \mid \mathbf{E}_{i}^{*} W \neq\{0\}\right\}$ is called the endpoint of W. The number $\min _{0 \leq i \leq D}\left\{i \mid \mathbf{E}_{i} W \neq\{0\}\right\}$ is called the dual endpoint of W. The support of W is defined as the set $\left\{i \mid 0 \leq i \leq D, \mathbf{E}_{i}^{*} W \neq\{0\}\right\}$. The dual support of W is defined as the set $\left\{i \mid 0 \leq i \leq D, \mathbf{E}_{i} W \neq\{0\}\right\}$. The number $\left|\left\{i \mid 0 \leq i \leq D, \mathbf{E}_{i}^{*} W \neq\{0\}\right\}\right|-1$ is called the diameter of W. The number $\left|\left\{i \mid 0 \leq i \leq D, \mathbf{E}_{i} W \neq\{0\}\right\}\right|-1$ is called the dual diameter of W.

3.2 The adjacency matrix and the dual adjacency matrix of a Hamming graph

Let X be a nonempty set and let n be a positive integer. The notation

$$
X^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{1}, x_{2}, \ldots, x_{n} \in X\right\}
$$

stands for the n-ary Cartesian product of X. For any $x \in X^{n}$, let x_{i} denote the $i^{\text {th }}$ coordinate of x for all $i=1,2, \ldots, n$.

Recall that q stands for an integer greater than or equal to 3 . For the rest of this paper, we set

$$
X=\{0,1, \ldots, q-1\}
$$

and let D be a positive integer.
Definition 3.1. The D-dimensional Hamming graph $H(D)=H(D, q)$ over X has the vertex set X^{D} and $x, y \in X^{D}$ are adjacent if and only if x and y differ in exactly one coordinate.

Let ∂ denote the path-length distance function for $H(D)$. Observe that $\partial(x, y)=\mid\{i \mid 1 \leq$ $\left.i \leq D, x_{i} \neq y_{i}\right\} \mid$ for any $x, y \in X^{D}$. It is routine to verify that $H(D)$ is a distance-regular graph with diameter D and its intersection numbers are

$$
a_{i}=i(q-2), \quad b_{i}=(D-i)(q-1), \quad c_{i}=i
$$

for all $i=0,1, \ldots, D$.
Let $V(D)$ denote the vector space consisting of the complex column vectors indexed by X^{D}. For convenience we write $V=V(1)$. For any $x \in X^{D}$, let \hat{x} denote the vector of $V(D)$ with 1 in the x-coordinate and 0 elsewhere. We view any $L \in \operatorname{Mat}_{X^{D}}(\mathbb{C})$ as the linear map $V(D) \rightarrow V(D)$ that sends \hat{x} to $L \hat{x}$ for all $x \in X^{D}$. We identify the vector space $V(D)$ with $V^{\otimes D}$ via the linear isomorphism $V(D) \rightarrow V^{\otimes D}$ given by

$$
\hat{x} \rightarrow \hat{x}_{1} \otimes \hat{x}_{2} \otimes \cdots \otimes \hat{x}_{D} \quad \text { for all } x \in X^{D} .
$$

Let $\mathbf{I}(D)$ denote the identity matrix in $\operatorname{Mat}_{X^{D}}(\mathbb{C})$ and let $\mathbf{A}(D)$ denote the adjacency matrix of $H(D)$. We simply write $\mathbf{I}=\mathbf{I}(1)$ and $\mathbf{A}=\mathbf{A}(1)$.

Lemma 3.2. Let $D \geq 2$ be an integer. Then

$$
\begin{equation*}
\mathbf{A}(D)=\mathbf{A}(D-1) \otimes \mathbf{I}+\mathbf{I}(D-1) \otimes \mathbf{A} . \tag{3.3}
\end{equation*}
$$

Proof. Let $x \in X^{D}$ be given. Applying \hat{x} to the right-hand side of (3.3) a straightforward calculation yields that it is equal to

$$
\sum_{i=1}^{D} \sum_{y_{i} \in X \backslash\left\{x_{i}\right\}} \hat{x}_{1} \otimes \cdots \otimes \hat{x}_{i-1} \otimes \hat{y}_{i} \otimes \hat{x}_{i+1} \otimes \cdots \otimes \hat{x}_{D}=\mathbf{A}(D) \hat{x}
$$

The lemma follows.
Using Lemma 3.2, a routine induction yields that $\mathbf{A}(D)$ has the eigenvalues

$$
\theta_{i}(D)=D(q-1)-q i \quad \text { for all } i=0,1, \ldots, D
$$

Let $\mathbf{E}_{i}(D)$ denote the primitive idempotent of $H(D)$ associated with $\theta_{i}(D)$ for all $i=0,1, \ldots, D$. We simply write $\mathbf{E}_{0}=\mathbf{E}_{0}(1)$ and $\mathbf{E}_{1}=\mathbf{E}_{1}(1)$. For convenience, we interpret $\mathbf{E}_{-1}(D)$ and $\mathbf{E}_{D+1}(D)$ as the zero matrix in $\operatorname{Mat}_{X^{D}}(\mathbb{C})$.

Lemma 3.3. Let $D \geq 2$ be an integer. Then

$$
\begin{equation*}
\mathbf{E}_{i}(D)=\mathbf{E}_{i}(D-1) \otimes \mathbf{E}_{0}+\mathbf{E}_{i-1}(D-1) \otimes \mathbf{E}_{1} \quad \text { for all } i=0,1, \ldots, D \tag{3.4}
\end{equation*}
$$

Proof. We proceed by induction on D. Let $\mathbf{E}_{i}(D)^{\prime}$ denote the right-hand side of (3.4) for $i=0,1, \ldots, D$. Applying Lemma 3.2 along with the induction hypothesis, it follows that

$$
\sum_{i=0}^{D} \mathbf{E}_{i}(D)^{\prime}=\mathbf{I}(D), \quad \mathbf{A}(D) \mathbf{E}_{i}(D)^{\prime}=\theta_{i}(D) \mathbf{E}_{i}(D)^{\prime} \quad \text { for all } i=0,1, \ldots, D
$$

Hence $\mathbf{E}_{i}(D)=\mathbf{E}_{i}(D)^{\prime}$ for all $i=0,1, \ldots, D$. The lemma follows.
Applying Lemma 3.3 yields that

$$
\mathbf{E}_{1}(D) \odot \mathbf{E}_{i}(D)=q^{-D}\left(b_{i-1}^{*} \mathbf{E}_{i-1}(D)+a_{i}^{*} \mathbf{E}_{i}(D)+c_{i+1}^{*} \mathbf{E}_{i+1}(D)\right)
$$

for all $i=0,1, \ldots, D$, where

$$
a_{i}^{*}=i(q-2), \quad b_{i}^{*}=(D-i)(q-1), \quad c_{i}^{*}=i
$$

for all $i=0,1, \ldots, D$. Here b_{-1}^{*}, c_{D+1}^{*} are interpreted as any scalars in \mathbb{C}. Hence $H(D)$ is Q-polynomial with respect to the ordering $\left\{\mathbf{E}_{i}(D)\right\}_{i=0}^{D}$.

Observe that the graph $H(D)$ is vertex-transitive. Without loss of generality, we can consider the dual adjacency matrix $\mathbf{A}^{*}(D)$ of $H(D)$ with respect to $(0,0, \ldots, 0) \in X^{D}$. We simply write $\mathbf{A}^{*}=\mathbf{A}^{*}(1)$.

Lemma 3.4. Let $D \geq 2$ be an integer. Then

$$
\mathbf{A}^{*}(D)=\mathbf{A}^{*}(D-1) \otimes \mathbf{I}+\mathbf{I}(D-1) \otimes \mathbf{A}^{*} .
$$

Proof. Given $y \in X^{D}$ let c_{y} denote the coefficient of \hat{y} in $\mathbf{E}_{1}(D) \cdot \hat{0}^{\otimes D}$ with respect to the basis $\{\hat{x}\}_{x \in X^{D}}$ for $V(D)$. By (3.2), we have

$$
\mathbf{A}^{*}(D) \hat{y}=q^{D} c_{y} \hat{y} \quad \text { for all } y \in X^{D} .
$$

Suppose that $D \geq 2$. Using Lemma 3.3 yields that $c_{y}=q^{-1} c_{\left(y_{1}, \ldots, y_{D-1}\right)}+q^{1-D} c_{y_{D}}$ for all $y \in X^{D}$. Hence

$$
\begin{aligned}
\mathbf{A}^{*}(D) \hat{y} & =\left(q^{D-1} c_{\left(y_{1}, \ldots, y_{D-1}\right)}+q c_{y_{D}}\right) \hat{y} \\
& =\mathbf{A}^{*}(D-1)\left(\hat{y}_{1} \otimes \cdots \otimes \hat{y}_{D-1}\right) \otimes \hat{y}_{D}+\hat{y}_{1} \otimes \cdots \otimes \hat{y}_{D-1} \otimes \mathbf{A}^{*} \hat{y}_{D} \\
& =\left(\mathbf{A}^{*}(D-1) \otimes \mathbf{I}+\mathbf{I}(D-1) \otimes \mathbf{A}^{*}\right) \hat{y}
\end{aligned}
$$

for all $y \in X^{D}$. The lemma follows.
Let $\mathbf{E}_{i}^{*}(D)$ denote the $i^{\text {th }}$ dual primitive idempotent of $H(D)$ with respect to $(0,0, \ldots, 0) \in X^{D}$ for all $i=0,1, \ldots, D$. We simply write $\mathbf{E}_{0}^{*}=\mathbf{E}_{0}^{*}(1)$ and $\mathbf{E}_{1}^{*}=\mathbf{E}_{1}^{*}(1)$. For convenience, we interpret $\mathbf{E}_{-1}^{*}(D)$ and $\mathbf{E}_{D+1}^{*}(D)$ as the zero matrix in $\operatorname{Mat}_{X^{D}}(\mathbb{C})$.

Lemma 3.5. Let $D \geq 2$ be an integer. Then

$$
\mathbf{E}_{i}^{*}(D)=\mathbf{E}_{i}^{*}(D-1) \otimes \mathbf{E}_{0}^{*}+\mathbf{E}_{i-1}^{*}(D-1) \otimes \mathbf{E}_{1}^{*} \quad \text { for all } i=0,1, \ldots, D
$$

Proof. It is straightforward to verify the lemma by using (3.1).
Using Lemmas 3.4 and 3.5 , a routine induction yields that $\mathbf{A}^{*}(D) \mathbf{E}_{i}^{*}(D)=\theta_{i}^{*}(D) \mathbf{E}_{i}^{*}(D)$ for all $i=0,1, \ldots, D$ where $\theta_{i}^{*}(D)=D(q-1)-q i$.

3.3 Proofs of Proposition 1.9 and Theorems 1.10, 1.11

In this subsection, we set

$$
\omega=1-\frac{2}{q} .
$$

Let $\mathcal{T}(D)$ denote the Terwilliger algebra of $H(D)$ with respect to $(0,0, \ldots, 0) \in X^{D}$.
Definition 3.6. Let V_{0} denote the subspace of V consisting of all vectors $\sum_{i=1}^{q-1} c_{i} \hat{i}$, where $c_{1}, c_{2}, \ldots, c_{q-1} \in \mathbb{C}$ with $\sum_{i=1}^{q-1} c_{i}=0$. Let V_{1} denote the subspace of V spanned by $\hat{0}$ and $\sum_{i=1}^{q-1} \hat{i}$.

Definition 3.7. For any $s \in\{0,1\}^{D}$, we define the subspace $V_{s}(D)$ of $V(D)$ by

$$
V_{s}(D)=V_{s_{1}} \otimes V_{s_{2}} \otimes \cdots \otimes V_{s_{D}}
$$

Note that $V_{0}(1)=V_{0}$ and $V_{1}(1)=V_{1}$.
Lemma 3.8. The vector space $V(D)$ is equal to

$$
\bigoplus_{s \in\{0,1\}^{D}} V_{s}(D)
$$

Proof. By Definition 3.6, we have $V=V_{0} \oplus V_{1}$. It follows that

$$
V(D)=V^{\otimes D}=\left(V_{0} \oplus V_{1}\right)^{\otimes D}
$$

The lemma follows by applying the distributive law of \otimes over \oplus to the right-hand side of the above equation.

Lemma 3.9.

(i) There exists a unique representation $r_{0}: \mathfrak{K}_{\omega} \rightarrow \operatorname{End}\left(V_{0}\right)$ that sends

$$
\left.A \mapsto \frac{1}{q} \mathbf{A}\right|_{V_{0}}+\frac{1}{q},\left.\quad B \mapsto \frac{1}{q} \mathbf{A}^{*}\right|_{V_{0}}+\frac{1}{q}
$$

Moreover, the \mathfrak{K}_{ω}-module V_{0} is isomorphic to $(q-2) \cdot L_{0}$.
(ii) There exists a unique representation $r_{1}: \mathfrak{K}_{\omega} \rightarrow \operatorname{End}\left(V_{1}\right)$ that sends

$$
\left.A \mapsto \frac{1}{q} \mathbf{A}\right|_{V_{1}}+\frac{1}{q}-\frac{1}{2},\left.\quad B \mapsto \frac{1}{q} \mathbf{A}^{*}\right|_{V_{1}}+\frac{1}{q}-\frac{1}{2}
$$

Moreover, the \mathfrak{K}_{ω}-module V_{1} is isomorphic to L_{1}.
Proof. (i) The subspace V_{0} of V is invariant under \mathbf{A} and \mathbf{A}^{*} acting as scalar multiplication by -1 . By Lemma 2.1, the statement (i) follows.
(ii) The subspace V_{1} of V is invariant under \mathbf{A} and \mathbf{A}^{*} and the matrices representing \mathbf{A} and \mathbf{A}^{*} with respect to the basis $\hat{0}, \sum_{i=1}^{q-1} \hat{i}$ for V_{1} are

$$
\left(\begin{array}{ll}
0 & q-1 \\
1 & q-2
\end{array}\right), \quad\left(\begin{array}{cr}
q-1 & 0 \\
0 & -1
\end{array}\right)
$$

respectively. By Lemma 2.1, the statement (ii) follows.
Definition 3.10. For any $s \in\{0,1\}^{D}$, we define the representation $r_{s}(D): \mathfrak{K}_{\omega} \rightarrow \operatorname{End}\left(V_{s}(D)\right)$ by

$$
r_{s}(D)=\left(r_{s_{1}} \otimes r_{s_{2}} \otimes \cdots \otimes r_{s_{D}}\right) \circ \Delta_{D-1}
$$

Note that $r_{0}(1)=r_{0}$ and $r_{1}(1)=r_{1}$.
Proposition 3.11. For any integer $D \geq 2$ and any $s \in\{0,1\}^{D}$, the following diagram commutes:

Proof. By Definition 3.10 the map $r_{\left(s_{1}, s_{2}, \ldots, s_{D-1}\right)}(D-1)=\left(r_{s_{1}} \otimes r_{s_{2}} \otimes \cdots \otimes r_{s_{D-1}}\right) \circ \Delta_{D-2}$. Hence

$$
\begin{aligned}
r_{\left(s_{1}, s_{2}, \ldots, s_{D-1}\right)}(D-1) \otimes r_{s_{D}} & =\left(\left(r_{s_{1}} \otimes r_{s_{2}} \otimes \cdots \otimes r_{s_{D-1}}\right) \circ \Delta_{D-2}\right) \otimes r_{s_{D}} \\
& =\left(r_{s_{1}} \otimes r_{s_{2}} \otimes \cdots \otimes r_{s_{D}}\right) \circ\left(\Delta_{D-2} \otimes 1\right) .
\end{aligned}
$$

By (2.2), the map $\Delta_{D-1}=\left(\Delta_{D-2} \otimes 1\right) \circ \Delta$. Combined with Definition 3.10, the following diagram commutes:

The proposition follows.
Proposition 3.12. For any $s \in\{0,1\}^{D}$, the representation $r_{s}(D): \mathfrak{K}_{\omega} \rightarrow \operatorname{End}\left(V_{s}(D)\right)$ maps

$$
\begin{align*}
& \left.A \mapsto \frac{1}{q} \mathbf{A}(D)\right|_{V_{s}(D)}+\frac{D}{q}-\frac{1}{2} \sum_{i=1}^{D} s_{i}, \tag{3.5}\\
& \left.B \mapsto \frac{1}{q} \mathbf{A}^{*}(D)\right|_{V_{s}(D)}+\frac{D}{q}-\frac{1}{2} \sum_{i=1}^{D} s_{i} . \tag{3.6}
\end{align*}
$$

Proof. We proceed by induction on D. By Lemma 3.9, the statement is true when $D=1$. Suppose that $D \geq 2$. For convenience let $s^{\prime}=\left(s_{1}, s_{2}, \ldots, s_{D-1}\right) \in\{0,1\}^{D-1}$. By Lemma 2.5 and Proposition 3.11, the map $r_{s}(D)$ sends A to

$$
r_{s^{\prime}}(D-1)(A) \otimes 1+1 \otimes r_{s_{D}}(A)
$$

Applying the induction hypothesis the above element is equal to

$$
\begin{aligned}
& \left(\left.\frac{1}{q} \mathbf{A}(D-1)\right|_{V_{s^{\prime}}(D-1)}+\frac{D-1}{q}-\frac{1}{2} \sum_{i=1}^{D-1} s_{i}\right) \otimes 1+1 \otimes\left(\left.\frac{1}{q} \mathbf{A}\right|_{V_{s_{D}}}+\frac{1}{q}-\frac{s_{D}}{2}\right) \\
& \quad=\frac{\left.\mathbf{A}(D-1)\right|_{V_{s^{\prime}}(D-1)} \otimes 1+\left.1 \otimes \mathbf{A}\right|_{V_{s_{D}}}}{q}+\frac{D}{q}-\frac{1}{2} \sum_{i=1}^{D} s_{i} .
\end{aligned}
$$

By Lemma 3.2, the first term in the right-hand side of the above equation equals $\left.\frac{1}{q} \mathbf{A}(D)\right|_{V_{s}(D)}$. Hence (3.5) holds. By a similar argument, (3.6) holds. The proposition follows.

In light of Proposition 3.12, the $\mathcal{T}(D)$-module $V_{s}(D)$ is a \mathfrak{K}_{ω}-module for all $s \in\{0,1\}^{D}$. Combined with Lemma 3.8, the standard $\mathcal{T}(D)$-module $V(D)$ is a \mathfrak{K}_{ω}-module.

Lemma 3.13. Let p be a positive integer. Then the \mathfrak{K}_{ω}-module $L_{1}^{\otimes p}$ is isomorphic to

$$
\bigoplus_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor} \frac{p-2 k+1}{p-k+1}\binom{p}{k} \cdot L_{p-2 k} .
$$

Proof. We proceed by induction on p. If $p=1$, then there is nothing to prove. Suppose that $p \geq 2$. Applying the induction hypothesis yields that the \mathfrak{K}_{ω}-module $L_{1}^{\otimes p}$ is isomorphic to

$$
\left(\bigoplus_{k=0}^{\left\lfloor\frac{p-1}{2}\right\rfloor} \frac{p-2 k}{p-k}\binom{p-1}{k} \cdot L_{p-2 k-1}\right) \otimes L_{1} .
$$

Applying the distributive law of \otimes over \oplus the above \mathfrak{K}_{ω}-module is isomorphic to

$$
\bigoplus_{k=0}^{\left\lfloor\frac{p-1}{2}\right\rfloor} \frac{p-2 k}{p-k}\binom{p-1}{k} \cdot\left(L_{p-2 k-1} \otimes L_{1}\right) .
$$

By Theorem 2.6, the \mathfrak{K}_{ω}-module $L_{p-2 k-1} \otimes L_{1}$ is isomorphic to

$$
\begin{cases}L_{p-2 k} \oplus L_{p-2 k-2} & \text { if } 0 \leq k \leq\left\lfloor\frac{p}{2}\right\rfloor-1 \\ L_{1} & \text { else }\end{cases}
$$

for all $k=0,1, \ldots,\left\lfloor\frac{p-1}{2}\right\rfloor$. Hence the multiplicity of $L_{p-2 k}$ in $L_{1}^{\otimes p}$ is equal to

$$
\frac{p-2 k}{p-k}\binom{p-1}{k}+\frac{p-2 k+2}{p-k+1}\binom{p-1}{k-1}=\frac{p-2 k+1}{p-k+1}\binom{p}{k}
$$

for all $k=0,1, \ldots,\left\lfloor\frac{p}{2}\right\rfloor$. Here $\binom{p-1}{k-1}$ is interpreted as 0 when $k=0$. The lemma follows.
Lemma 3.14. Let p be an integer with $0 \leq p \leq D$. Suppose that $s \in\{0,1\}^{D}$ with $p=\sum_{i=1}^{D} s_{i}$. Then the \mathfrak{K}_{ω}-module $V_{s}(D)$ is isomorphic to

$$
\bigoplus_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor} \frac{p-2 k+1}{p-k+1}\binom{p}{k}(q-2)^{D-p} \cdot L_{p-2 k} .
$$

Proof. By Definition 3.7, the \mathfrak{K}_{ω}-module $V_{s}(D)$ is isomorphic to $V_{1}^{\otimes p} \otimes V_{0}^{\otimes(D-p)}$. Applying Lemma 3.9 the above \mathfrak{K}_{ω}-module is isomorphic to $(q-2)^{D-p} \cdot L_{1}^{\otimes p}$. Combined with Lemma 3.13, the lemma follows.

Proof of Proposition 1.9. Let p and k be two integers with $0 \leq p \leq D$ and $0 \leq k \leq\left\lfloor\frac{p}{2}\right\rfloor$. Pick any $s \in\{0,1\}^{D}$ with $p=\sum_{i=1}^{D} s_{i}$. By Lemma 3.14, the \mathfrak{K}_{ω}-module $V_{s}(D)$ contains the irreducible \mathfrak{K}_{ω}-module $L_{p-2 k}$. Let $\left\{v_{i}\right\}_{i=0}^{p-2 k}$ and $\left\{w_{i}\right\}_{i=0}^{p-2 k}$ denote the two bases for $L_{p-2 k}$ described in Lemmas 2.1 and 2.4 with $n=p-2 k$, respectively. In light of Proposition 3.12, we may view the \mathfrak{K}_{ω}-submodule $L_{p-2 k}$ of $V_{s}(D)$ as an irreducible $\mathcal{T}(D)$-module and denoted by $L_{p, k}(D)$. To see (i) and (ii), one may evaluate the matrices representing $\mathbf{A}(D)$ and $\mathbf{A}^{*}(D)$ with respect to the bases $\left\{v_{i}\right\}_{i=0}^{p-2 k}$ and $\left\{w_{i}\right\}_{i=0}^{p-2 k}$ for $L_{p, k}(D)$, respectively. The proposition follows.

Proof of Theorem 1.10. Let p be any integer with $0 \leq p \leq D$. By Lemma 3.14, for any $s \in\{0,1\}^{D}$ with $p=\sum_{i=1}^{D} s_{i}$ the $\mathcal{T}(D)$-submodule $V_{s}(D)$ of $V(D)$ is isomorphic to

$$
\bigoplus_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor} \frac{p-2 k+1}{p-k+1}\binom{p}{k}(q-2)^{D-p} \cdot L_{p, k}(D)
$$

Combined with Lemma 3.8, the result follows.

Proof of Theorem 1.11. Since the standard $\mathcal{T}(D)$-module $V(D)$ contains all irreducible $\mathcal{T}(D)$-modules up to isomorphism, the map \mathcal{E} is onto. Suppose that there are two pairs (p, k) and $\left(p^{\prime}, k^{\prime}\right)$ in $\mathbf{P}(D)$ such that the irreducible $\mathcal{T}(D)$-module $L_{p, k}(D)$ is isomorphic to $L_{p^{\prime}, k^{\prime}}(D)$. Since they have the same dimension, it follows that

$$
\begin{equation*}
p-2 k=p^{\prime}-2 k^{\prime} \tag{3.7}
\end{equation*}
$$

Since $\mathbf{A}^{*}(D)$ has the same eigenvalues in $L_{p, k}(D)$ and $L_{p^{\prime}, k^{\prime}}(D)$, it follows from Proposition 1.9 that $p-k=p^{\prime}-k^{\prime}$. Combined with (3.7), this yields that $(p, k)=\left(p^{\prime}, k^{\prime}\right)$. Therefore, \mathcal{E} is one-to-one.

Corollary 3.15 ([11, Corollary 3.7$])$. The algebra $\mathcal{T}(D)$ is isomorphic to

$$
\bigoplus_{p=0}^{D} \bigoplus_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor} \operatorname{Mat}_{p-2 k+1}(\mathbb{C}) .
$$

Moreover, $\operatorname{dim} \mathcal{T}(D)=\binom{D+4}{4}$.
Proof. By Theorem 1.11, the algebra $\mathcal{T}(D)$ is isomorphic to $\bigoplus_{p=0}^{D} \bigoplus_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor} \operatorname{End}\left(L_{p, k}(D)\right)$. Hence $\operatorname{dim} \mathcal{T}(D)$ is equal to

$$
\sum_{p=0}^{D} \sum_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor}(p-2 k+1)^{2}=\sum_{p=0}^{D}\binom{p+3}{3}=\binom{D+4}{4}
$$

The corollary follows.

A Restatements of Proposition 1.9 and Theorems 1.10, 1.11

Recall the irreducible $\mathcal{T}(D)$-module $L_{p, k}(D)$ from Proposition 1.9. Let r, r^{*}, d, d^{*} denote the endpoint, dual endpoint, diameter, dual diameter of $L_{p, k}(D)$ respectively. It is known from [18, p. 197] that $\left\lceil\frac{D-d}{2}\right\rceil \leq r, r^{*} \leq D-d$. From the results of Section 3.2, we see that

$$
r=r^{*}=D+k-p, \quad d=d^{*}=p-2 k
$$

In terms of the parameters r and d, the parameters p and k read as

$$
p=2 D-d-2 r, \quad k=D-d-r
$$

Thus we can restate Proposition 1.9 and Theorems 1.10, 1.11 as follows:
Proposition A.1. Let D be a positive integer. For any integers d and r with $0 \leq d \leq D$ and $\left\lceil\frac{D-d}{2}\right\rceil \leq r \leq D-d$, there exists a $(d+1)$-dimensional irreducible $\mathcal{T}(D)$-module $M_{d, r}(D)$ satisfying the following conditions:
(i) There exists a basis for $M_{d, r}(D)$ with respect to which the matrices representing $\mathbf{A}(D)$ and $\mathbf{A}^{*}(D)$ are

$$
\left(\begin{array}{ccccc}
\alpha_{0} & \gamma_{1} & & & \mathbf{0} \\
\beta_{0} & \alpha_{1} & \gamma_{2} & & \\
& \beta_{1} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \gamma_{d} \\
\mathbf{0} & & & \beta_{d-1} & \alpha_{d}
\end{array}\right), \quad\left(\begin{array}{lllll}
\theta_{0} & & & & \mathbf{0} \\
& \theta_{1} & & & \\
& & \theta_{2} & & \\
& & & \ddots & \\
\mathbf{0} & & & & \theta_{d}
\end{array}\right),
$$

respectively.
(ii) There exists a basis for $M_{d, r}(D)$ with respect to which the matrices representing $\mathbf{A}(D)$ and $\mathbf{A}^{*}(D)$ are

$$
\left(\begin{array}{lllll}
\theta_{0} & & & & \mathbf{0} \\
& \theta_{1} & & & \\
& & \theta_{2} & & \\
& & & \ddots & \\
\mathbf{0} & & & & \theta_{d}
\end{array}\right), \quad\left(\begin{array}{ccccc}
\alpha_{0} & \gamma_{1} & & & \mathbf{0} \\
\beta_{0} & \alpha_{1} & \gamma_{2} & & \\
& \beta_{1} & \alpha_{2} & \ddots & \\
& & \ddots & \ddots & \gamma_{d} \\
\mathbf{0} & & & \beta_{d-1} & \alpha_{d}
\end{array}\right),
$$

respectively.
Here the parameters $\left\{\alpha_{i}\right\}_{i=0}^{d},\left\{\beta_{i}\right\}_{i=0}^{d-1},\left\{\gamma_{i}\right\}_{i=1}^{d},\left\{\theta_{i}\right\}_{i=0}^{d}$ are as follows:

$$
\begin{array}{ll}
\alpha_{i}=(D-d+i-r)(q-1)-i-r & \text { for } i=0,1, \ldots, d, \\
\beta_{i}=i+1 & \text { for } \quad i=0,1, \ldots, d-1, \\
\gamma_{i}=(q-1)(d-i+1) & \text { for } \quad i=1,2, \ldots, d, \\
\theta_{i}=D(q-1)-q(i+r) & \text { for } \quad i=0,1, \ldots, d .
\end{array}
$$

Theorem A.2. Let D be a positive integer. Then the standard $\mathcal{T}(D)$-module $V(D)$ is isomorphic to

$$
\bigoplus_{d=0}^{D} \bigoplus_{r=\left\lceil\frac{D-d}{2}\right\rceil}^{D-d} \frac{d+1}{D-r+1}\binom{D}{2 D-d-2 r}\binom{2 D-d-2 r}{D-d-r}(q-2)^{d-D+2 r} \cdot M_{d, r}(D)
$$

We illustrate Theorem A. 2 for $D=3$ and $D=4$:

D	d	r	The support of $M_{d, r}(D)$	The multiplicity of $M_{d, r}(D)$ in $V(D)$
3	3	0	$\{0,1,2,3\}$	1
	2	1	$\{1,2,3\}$	$3(q-2)$
	1	1	\{1,2\}	2
		2	\{2, 3\}	$3(q-2)^{2}$
	0	2	\{2\}	$3(q-2)$
		3	\{3\}	$(q-2)^{3}$
4	4	0	$\{0,1,2,3,4\}$	1
	3	1	$\{1,2,3,4\}$	$4(q-2)$
	2	1	$\{1,2,3\}$	3
		2	$\{2,3,4\}$	$6(q-2)^{2}$
	1	2	\{2,3\}	$8(q-2)$
		3	\{3, 4\}	$4(q-2)^{3}$
	0	2	\{2\}	2
		3	\{3\}	$6(q-2)^{2}$
		4	\{4\}	$(q-2)^{4}$

Theorem A.3. Let D be a positive integer. Let $\mathbf{P}(D)$ denote the set consisting of all pairs (d, r) of integers with $0 \leq d \leq D$ and $\left\lceil\frac{D-d}{2}\right\rceil \leq r \leq D-d$. Let $\mathbf{M}(D)$ denote the set of all
isomorphism classes of irreducible $\mathcal{T}(D)$-modules. Then there exists a bijection $\mathbf{P}(D) \rightarrow \mathbf{M}(D)$ given by

$$
(d, r) \mapsto \text { the isomorphism class of } M_{d, r}(D)
$$

for all $(d, r) \in \mathbf{P}(D)$.
By Theorem A.3, the structure of an irreducible $\mathcal{T}(D)$-module is determined by its endpoint and its diameter. Also we can restate Corollary 3.15 as follows:

Corollary A.4. The algebra $\mathcal{T}(D)$ is isomorphic to

$$
\bigoplus_{d=0}^{D}\left(\left\lfloor\frac{D-d}{2}\right\rfloor+1\right) \cdot \operatorname{Mat}_{d+1}(\mathbb{C}) .
$$

Moreover, $\operatorname{dim} \mathcal{T}(D)=\binom{D+4}{4}$.

Acknowledgements

The author would like to thank the anonymous referees for insightful suggestions to improve the paper and bring his attention to [13]. Also, the author thanks Dr. Luc Vinet to bring his attention to $[1,2,9]$. The research is supported by the Ministry of Science and Technology of Taiwan under the project MOST 110-2115-M-008-008-MY2.

References

[1] Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Johnson graphs, arXiv:2104.11581.
[2] Bernard P.-A., Crampé N., Vinet L., Entanglement of free fermions on Hamming graphs, Nuclear Phys. B 986 (2023), 116061, 22 pages, arXiv:2103.15742.
[3] Curtis C.W., Reiner I., Representation theory of finite groups and associative algebras, Pure Appl. Math., Vol. 11, Interscience Publishers, New York, 1962.
[4] Gijswijt D., Schrijver A., Tanaka H., New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming, J. Combin. Theory Ser. A 113 (2006), 1719-1731.
[5] Go J.T., The Terwilliger algebra of the hypercube, European J. Combin. 23 (2002), 399-429.
[6] Huang H.-W., Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Comm. Math. Phys. 340 (2015), 959-984, arXiv:1210.1740.
[7] Huang H.-W., Finite-dimensional irreducible modules of the Bannai-Ito algebra at characteristic zero, Lett. Math. Phys. 110 (2020), 2519-2541, arXiv:1910.11447.
[8] Huang H.-W., Bockting-Conrad S., Finite-dimensional irreducible modules of the Racah algebra at characteristic zero, SIGMA 16 (2020), 018, 17 pages, arXiv:1910.11446.
[9] Jafarizadeh M.A., Nami S., Eghbalifam F., Entanglement entropy in the Hamming networks, arXiv:1503.04986.
[10] Kassel C., Quantum groups, Grad. Texts in Math., Vol. 155, Springer, New York, 1995.
[11] Levstein F., Maldonado C., Penazzi D., The Terwilliger algebra of a Hamming scheme H(d,q), European J. Combin. 27 (2006), 1-10.
[12] Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
[13] Nomura K., Terwilliger P., Krawtchouk polynomials, the Lie algebra $\mathfrak{s l}_{2}$, and Leonard pairs, Linear Algebra Appl. 437 (2012), 345-375, arXiv:1201.1645.
[14] Tanabe K., The irreducible modules of the Terwilliger algebras of Doob schemes, J. Algebraic Combin. 6 (1997), 173-195.
[15] Terwilliger P., Leonard pairs and dual polynomial sequences, Unpublished manuscript, 1987, available at https://www.math.wisc.edu/~terwilli/Htmlfiles/leonardpair.pdf.
[16] Terwilliger P., The subconstituent algebra of an association scheme. I, J. Algebraic Combin. 1 (1992), 363388.
[17] Terwilliger P., The subconstituent algebra of an association scheme. II, J. Algebraic Combin. 2 (1993), 73-103.
[18] Terwilliger P., The subconstituent algebra of an association scheme. III, J. Algebraic Combin. 2 (1993), 177-210.
[19] Terwilliger P., An algebraic approach to the Askey scheme of orthogonal polynomials, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 255-330.
[20] Terwilliger P., Manila notes, 2010, available at https://people.math.wisc.edu/~terwilli/teaching. html.
[21] Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations, J. Algebra Appl. 3 (2004), 411426, arXiv:math.QA/0305356.
[22] Vidũnas R., Normalized Leonard pairs and Askey-Wilson relations, Linear Algebra Appl. 422 (2007), 39-57, arXiv:math.RA/0505041.

