Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 19 (2023), 016, 29 pages      arXiv:2101.07470
Contribution to the Special Issue on Symmetry, Invariants, and their Applications in honor of Peter J. Olver

Darboux Transformations for Orthogonal Differential Systems and Differential Galois Theory

Primitivo Acosta-Humánez a, Moulay Barkatou b, Raquel Sánchez-Cauce c and Jacques-Arthur Weil b
a) Instituto de Matemática & Escuela de Matemática, Universidad Autónoma de Santo Domingo, Dominican Republic
b) XLim - Université de Limoges & CNRS, Limoges, France
c) Department of Artificial Intelligence, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

Received July 21, 2022, in final form March 20, 2023; Published online March 31, 2023

Darboux developed an ingenious algebraic mechanism to construct infinite chains of ''integrable'' second-order differential equations as well as their solutions. After a surprisingly long time, Darboux's results were rediscovered and applied in many frameworks, for instance in quantum mechanics (where they provide useful tools for supersymmetric quantum mechanics), in soliton theory, Lax pairs and many other fields involving hierarchies of equations. In this paper, we propose a method which allows us to generalize the Darboux transformations algorithmically for tensor product constructions on linear differential equations or systems. We obtain explicit Darboux transformations for third-order orthogonal systems ($\mathfrak{so}(3, C_K)$ systems) as well as a framework to extend Darboux transformations to any symmetric power of $\mathrm{SL}(2,\mathbb{C})$-systems. We introduce SUSY toy models for these tensor products, giving as an illustration the analysis of some shape invariant potentials. All results in this paper have been implemented and tested in the computer algebra system Maple.

Key words: Darboux transformations; differential Galois group; differential Galois theory; Frenet-Serret formulas; orthogonal differential systems; rigid solid problem; Schrödinger equation; shape invariant potentials; supersymmetric quantum mechanics; symmetric power; tensor product.

pdf (587 kb)   tex (39 kb)  


  1. Acosta Humánez P.B., Galoisian approach to supersymmetric quantum mechanics, Ph.D. Thesis, Universitat Politècnica de Catalunya, 2009, available at, arXiv:1008.3445.
  2. Acosta-Humánez P.B., Galoisian approach to supersymmetric quantum mechanics. The integrability of the Schrödinger equation by means of differential Galois theory, VDM Verlag, Berlin, 2010.
  3. Acosta-Humánez P.B., Jiménez M., Ospino J., Galoisian and numerical approach of three dimensional linear differential systems with skew symmetric matrices defined in a non-constant differential field, Rev. Int. Métod. Numér. Cálc. Diseño Ing. 34 (2018), 8, 17 pages.
  4. Acosta-Humánez P.B., Morales-Ruiz J.J., Weil J.-A., Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67 (2011), 305-374, arXiv:1008.3445.
  5. Aparicio-Monforte A., Compoint E., Weil J.-A., A characterization of reduced forms of linear differential systems, J. Pure Appl. Algebra 217 (2013), 1504-1516, arXiv:1206.6661.
  6. Barkatou M.A., An algorithm for computing a companion block diagonal form for a system of linear differential equations, Appl. Algebra Engrg. Comm. Comput. 4 (1993), 185-195.
  7. Barkatou M.A., Cluzeau T., Di Vizio L., Weil J.-A., Reduced forms of linear differential systems and the intrinsic Galois-Lie algebra of Katz, SIGMA 16 (2020), 054, 13 pages, arXiv:1912.10567.
  8. Barkatou M.A., Cluzeau T., El Bacha C., Weil J.-A., Computing closed form solutions of integrable connections, in ISSAC 2012 - Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2012, 43-50.
  9. Barkatou M.A., Cluzeau T., Weil J.-A., Di Vizio L., Computing the Lie algebra of the differential Galois group of a linear differential system, in Proceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2016, 63-70.
  10. Blázquez-Sanz D., Differential Galois theory and Lie-Vessiot systems, VDM Verlag, Berlin, 2008.
  11. Blázquez-Sanz D., Morales-Ruiz J.J., Differential Galois theory of algebraic Lie-Vessiot systems, in Differential Algebra, Complex Analysis and Orthogonal Polynomials, Contemp. Math., Vol. 509, Amer. Math. Soc., Providence, RI, 2010, 1-58, arXiv:0901.4480.
  12. Bogner M., Algebraic characterization of differential operators of Calabi-Yau type, arXiv:1304.5434.
  13. Bogner M., Reiter S., On symplectically rigid local systems of rank four and Calabi-Yau operators, J. Symbolic Comput. 48 (2013), 64-100, arXiv:1105.1136.
  14. Bostan A., Boukraa S., Maillard J.-M., Weil J.-A., Diagonals of rational functions and selected differential Galois groups, J. Phys. A 48 (2015), 504001, 29 pages, arXiv:1507.03227.
  15. Boukraa S., Hassani S., Maillard J.-M., Differential algebra on lattice Green and Calabi-Yau operators, J. Phys. A 47 (2014), 095203, 37 pages, arXiv:1311.2470.
  16. Boukraa S., Hassani S., Maillard J.-M., Weil J.-A., Canonical decomposition of irreducible linear differential operators with symplectic or orthogonal differential Galois groups, J. Phys. A 48 (2015), 105202, 40 pages.
  17. Cortés J.L., Plyushchay M.S., Linear differential equations for a fractional spin field, J. Math. Phys. 35 (1994), 6049-6057, arXiv:hep-th/9405193.
  18. Crespo T., Hajto Z., Introduction to differential Galois theory, Cracow University of Technology Publishers, 2007.
  19. Darboux G., Sur une proposition relative aux équations linéaires, C. R. Acad. Sci. Paris 94 (1882), 1456-1459.
  20. Darboux G., Sur la représentation sphérique des surfaces, Ann. Sci. École Norm. Sup. 5 (1888), 79-96.
  21. Darboux G., Théorie des Surfaces, II, Gauthier-Villars, Paris, 1889.
  22. Darboux G., Leçons sur la théorie générale des surfaces. I, II, Les Grands Classiques Gauthier-Villars, Éditions Jacques Gabay, Sceaux, 1993.
  23. Dutt R., Khare A., Sukhatme U.P., Supersymmetry, shape invariance, and exactly solvable potentials, Amer. J. Phys. 56 (1988), 163-168.
  24. Fedorov Yu.N., Maciejewski A.J., Przybylska M., The Poisson equations in the nonholonomic Suslov problem: integrability, meromorphic and hypergeometric solutions, Nonlinearity 22 (2009), 2231-2259, arXiv:0902.0079.
  25. Fedorov Yu.N., Maciejewski A.J., Przybylska M., The generalized Euler-Poinsot rigid body equations: explicit elliptic solutions, J. Phys. A 46 (2013), 415201, 26 pages, arXiv:1304.6072.
  26. Gendenshteïn L., Derivation of the exact spectra of the Schrödinger equation by means of supersymmetry, JETP Lett. 38 (1983), 356-359.
  27. Gu C., Hu H., Zhou Z., Darboux transformations in integrable systems. Theory and their applications to geometry, Math. Phys. Stud., Vol. 26, Springer, Dordrecht, 2005.
  28. Ince E.L., Ordinary differential equations, Dover Publications, New York, 1944.
  29. Jiménez S., Morales-Ruiz J.J., Sánchez-Cauce R., Zurro M.-A., Differential Galois theory and Darboux transformations for integrable systems, J. Geom. Phys. 115 (2017), 75-88.
  30. Jiménez S., Morales-Ruiz J.J., Sánchez-Cauce R., Zurro M.-A., A computational approach to KdV rational solitons and their differential Galois groups, Monogr. Real Acad. Ci. Zaragoza 43 (2018), 107-110.
  31. Jiménez S., Morales-Ruiz J.J., Sánchez-Cauce R., Zurro M.-A., Rational KdV potentials and differential Galois theory, SIGMA 15 (2019), 047, 40 pages, arXiv:1808.00743.
  32. Matveev V.B., Darboux transformation and explicit solutions of the Kadomtcev-Petviaschvily equation, depending on functional parameters, Lett. Math. Phys. 3 (1979), 213-216.
  33. Matveev V.B., Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations. I, Lett. Math. Phys. 3 (1979), 217-222.
  34. Matveev V.B., Some comments on the rational solutions of the Zakharov-Schabat equations, Lett. Math. Phys. 3 (1979), 503-512.
  35. Matveev V.B., Darboux transformations, covariance theorems and integrable systems, in L.D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, Vol. 201, Amer. Math. Soc., Providence, RI, 2000, 179-209.
  36. Matveev V.B., Salle M.A., Differential-difference evolution equations. II. Darboux transformation for the Toda lattice, Lett. Math. Phys. 3 (1979), 425-429.
  37. Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Ser. Nonlinear Dyn., Springer, Berlin, 1991.
  38. Nguyen K.A., van der Put M., Solving linear differential equations, Pure Appl. Math. Q. 6 (2010), 173-208.
  39. Novikov R.G., Taimanov I.A., Moutard type transformation for matrix generalized analytic functions and gauge transformations, Russian Math. Surveys 71 (2016), 970-972, arXiv:1607.06661.
  40. Novikov R.G., Taimanov I.A., Darboux-Moutard transformations and Poincaré-Steklov operators, Proc. Steklov Inst. Math. 302 (2018), 315-324.
  41. Rogers C., Schief W.K., Bäcklund and Darboux transformations. Geometry and modern applications in soliton theory, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2002.
  42. Rosu H.C., Short survey ofDarboux transformations, arXiv:quant-ph/9809056.
  43. Samsonov B.F., Pecheritsin A.A., Chains of Darboux transformations for the matrix Schrödinger equation, href Phys. A 37 (2004), 239-250, arXiv:quant-ph/0307145
  44. Singer M.F., Algebraic relations among solutions of linear differential equations: Fano's theorem, Amer. J. Math. 110 (1988), 115-143.
  45. Spivak M., A comprehensive introduction to differential geometry, Vol. 2, Publish or Perish, Inc., Boston, Mass., 1999.
  46. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren Math. Wiss., Vol. 328, Springer, Berlin, 2003.
  47. van Hoeij M., Solving third order linear differential equations in terms of second order equations, in ISSAC 2007, ACM, New York, 2007, 355-360.
  48. Witten E., Dynamical breaking of supersymmetry, Nuclear Phys. B 185 (1981), 513-554.
  49. Yang H., Rui W., New Lax pairs and Darboux transformation and its application to a shallow water wave model of generalized KdV type, Math. Probl. Eng. 2013 (2013), 548690, 8 pages.

Previous article  Next article  Contents of Volume 19 (2023)