Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 084, 13 pages      arXiv:2209.02620

Three Examples in the Dynamical Systems Theory

Mikhail B. Sevryuk
V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semënov Federal Research Center of Chemical Physics, Russian Academy of Sciences, Leninskiǐ Prospect 38, Bld. 2, Moscow 119334, Russia

Received September 10, 2022, in final form October 18, 2022; Published online October 29, 2022

We present three explicit curious simple examples in the theory of dynamical systems. The first one is an example of two analytic diffeomorphisms $R$, $S$ of a closed two-dimensional annulus that possess the intersection property but their composition $RS$ does not ($R$ being just the rotation by $\pi/2$). The second example is that of a non-Lagrangian $n$-torus $L_0$ in the cotangent bundle $T^\ast{\mathbb T}^n$ of ${\mathbb T}^n$ ($n\geq 2$) such that $L_0$ intersects neither its images under almost all the rotations of $T^\ast{\mathbb T}^n$ nor the zero section of $T^\ast{\mathbb T}^n$. The third example is that of two one-parameter families of analytic reversible autonomous ordinary differential equations of the form $\dot{x}=f(x,y)$, $\dot{y}=\mu g(x,y)$ in the closed upper half-plane $\{y\geq 0\}$ such that for each family, the corresponding phase portraits for $0$<$\mu$<$1$ and for $\mu$>$1$ are topologically non-equivalent. The first two examples are expounded within the general context of symplectic topology.

Key words: intersection property; non-Lagrangian tori; planar vector fields; topological non-equivalence.

pdf (1168 kb)   tex (845 kb)  


  1. Abbondandolo A., Schlenk F., Floer homologies, with applications, Jahresber. Dtsch. Math.-Ver. 121 (2019), 155-238, arXiv:1709.00297.
  2. Abouzaid M., Kragh T., Simple homotopy equivalence of nearby Lagrangians, Acta Math. 220 (2018), 207-237, arXiv:1603.05431.
  3. Arnold V.I., Sur une propriété topologique des applications globalement canoniques de la mécanique classique, C. R. Acad. Sci. Paris 261 (1965), 3719-3722, English translation: On a topological property of globally canonical maps in classical mechanics, in Vladimir I. Arnold. Collected Works, Vol. 1, Editors A.B. Givental, B.A. Khesin, J.E. Marsden, A.N. Varchenko, V.A. Vassiliev, O.Ya. Viro, V.M. Zakalyukin, Springer-Verlag, Berlin, 2009, 481-485.
  4. Arnold V.I., First steps of symplectic topology, Russian Math. Surveys 41 (1986), no. 6, 1-21.
  5. Arnold V.I., Topological problems of the theory of wave propagation, Russian Math. Surveys 51 (1996), no. 1, 1-47.
  6. Arnold V.I., About Vladimir Abramovich Rokhlin, in Arnold: Swimming Against the Tide, AMS Non-Series Monographs, Vol. 86, Editors B.A. Khesin, S.L. Tabachnikov, Amer. Math. Soc., Providence, RI, 2014, 67-75.
  7. Audin M., Vladimir Igorevich Arnold and the invention of symplectic topology, in Contact and Symplectic Topology, Bolyai Soc. Math. Stud., Vol. 26, János Bolyai Math. Soc., Budapest, 2014, 1-25.
  8. Biran P., Geometry of symplectic intersections, in Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), Higher Ed. Press, Beijing, 2002, 241-255, arXiv:math.SG/0304260.
  9. Biran P., Lagrangian non-intersections, Geom. Funct. Anal. 16 (2006), 279-326, arXiv:math.SG/0412110.
  10. Boss V., Counterexamples and paradoxes, 3rd ed., Lectures on Math., Vol. 12, Librokom, Moscow, 2020.
  11. Chaperon M., Quelques questions de géométrie symplectique (d'après, entre autres, Poincaré, Arnold, Conley et Zehnder), Astérisque 105 (1983), 231-249.
  12. Floer A., Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), 513-547.
  13. Gelbaum B.R., Olmsted J.M.H., Counterexamples in analysis, Dover Publications, Inc., Mineola, NY, 2003.
  14. Ginzburg V.L., Coisotropic intersections, Duke Math. J. 140 (2007), 111-163, arXiv:math.SG/0605186.
  15. Gromov M., Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
  16. Gürel B.Z., Totally non-coisotropic displacement and its applications to Hamiltonian dynamics, Commun. Contemp. Math. 10 (2008), 1103-1128, arXiv:math.SG/0702091.
  17. Hofer H., Lagrangian embeddings and critical point theory, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 407-462.
  18. Huang P., Li X., Liu B., Invariant curves of smooth quasi-periodic mappings, Discrete Contin. Dyn. Syst. 38 (2018), 131-154, arXiv:1705.08762.
  19. Huang P., Li X., Liu B., Invariant curves of almost periodic twist mappings, J. Dynam. Differential Equations 34 (2022), 1997-2033, arXiv:1606.08938.
  20. Laudenbach F., Sikorav J.-C., Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent, Invent. Math. 82 (1985), 349-357.
  21. Laudenbach F., Sikorav J.-C., Hamiltonian disjunction and limits of Lagrangian submanifolds, Int. Math. Res. Not. 1994 (1994), 161 ff., 8 pages.
  22. Liu C., Xing J., A new proof of Moser's theorem, J. Appl. Anal. Comput. 12 (2022), 1679-1701.
  23. Ma Z., Xu J., A KAM theorem for quasi-periodic non-twist mappings and its application, Discrete Contin. Dyn. Syst. 42 (2022), 3169-3185.
  24. McDuff D., Salamon D., Introduction to symplectic topology, 3rd ed., Oxf. Grad. Texts Math., Oxford University Press, Oxford, 2017.
  25. Moser J., On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. G"ottingen Math.-Phys. Kl. II 1962 (1962), 1-20.
  26. Moser J., Remark on the paper ''On invariant curves of area-preserving mappings of an annulus'', Regul. Chaotic Dyn. 6 (2001), 337-338.
  27. Polterovich L., An obstacle to non-Lagrangian intersections, in The Floer Memorial Volume, Progr. Math., Vol. 133, Birkhäuser, Basel, 1995, 575-586.
  28. Rüssmann H., On the existence of invariant curves of twist mappings of an annulus, in Geometric Dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., Vol. 1007, Springer, Berlin, 1983, 677-718.
  29. Sevryuk M.B., On the composition of mappings possessing the intersection property, Sci. Tech. Educ. (2018), no. 4, 6-9.
  30. Shafarevich I.R., Basic notions of algebra, Encyclopaedia Math. Sci., Vol. 11, Springer-Verlag, Berlin, 2005.
  31. Shelukhin E., Symplectic cohomology and a conjecture of Viterbo, Geom. Funct. Anal., to appear, arXiv:1904.06798.
  32. Siegel C.L., Moser J.K., Lectures on celestial mechanics, Classics Math., Springer-Verlag, Berlin, 1995.
  33. The post by the user AVK of March 5 (edited March 7), 2022, available at
  34. Weinstein A., Lectures on symplectic manifolds, CBMS Reg. Conf. Ser. Math., Vol. 29, Amer. Math. Soc., Providence, R.I., 1979.
  35. Xia Z., Yu P., A fixed point theorem for twist maps, Discrete Contin. Dyn. Syst. 42 (2022), 4051-4059, arXiv:2106.06374.
  36. Yakovenko S.Yu., Vladimir Igorevich Arnold: A view from the rear bench, in Arnold: Swimming Against the Tide, AMS Non-Series Monographs, Vol. 86, Editors B.A. Khesin, S.L. Tabachnikov, Amer. Math. Soc., Providence, RI, 2014, 197-203.
  37. Yang L., Li X., Existence of periodically invariant tori on resonant surfaces for twist mappings, Discrete Contin. Dyn. Syst. 40 (2020), 1389-1409.

Previous article  Next article  Contents of Volume 18 (2022)