Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 085, 49 pages      arXiv:2111.04616

Character Vectors of Strongly Regular Vertex Operator Algebras

Cameron Franc a and Geoffrey Mason b
a) McMaster University, Canada

Received December 11, 2021, in final form October 13, 2022; Published online October 29, 2022

We summarize interactions between vertex operator algebras and number theory through the lens of Zhu theory. The paper begins by recalling basic facts on vertex operator algebras (VOAs) and modular forms, and then explains Zhu's theorem on characters of VOAs in a slightly new form. We then axiomatize the desirable properties of modular forms that have played a role in Zhu's theorem and related classification results of VOAs. After this we summarize known classification results in rank two, emphasizing the geometric theory of vector-valued modular forms as a means for simplifying the discussion. We conclude by summarizing some known examples, and by providing some new examples, in higher ranks. In particular, the paper contains a number of potential character vectors that could plausibly correspond to a VOA, but such that the existence of a corresponding hypothetical VOA is presently unknown.

Key words: vertex operator algebras; conformal field theory; modular forms.

pdf (767 kb)   tex (87 kb)  


  1. Anderson G., Moore G., Rationality in conformal field theory, Comm. Math. Phys. 117 (1988), 441-450.
  2. André Y., Sur la conjecture des $p$-courbures de Grothendieck-Katz et un problème de Dwork, in Geometric Aspects of Dwork Theory, Vols. I, II, Walter de Gruyter, Berlin, 2004, 55-112.
  3. Arike Y., Nagatomo K., Sakai Y., Vertex operator algebras, minimal models, and modular linear differential equations of order 4 (with an appendix by Don Zagier), J. Math. Soc. Japan 70 (2018), 1347-1373.
  4. Atkin A.O.L., Swinnerton-Dyer H.P.F., Modular forms on noncongruence subgroups, in Combinatorics (Proc. Sympos. Pure Math., Vol. XIX, Univ. California, Los Angeles, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1971, 1-25.
  5. Bae J.B., Duan Z., Lee K., Lee S., Sarkis M., Fermionic rational conformal field theories and modular linear differential equations, Prog. Theor. Exp. Phys. 2021 (2021), 08B104, 59 pages, arXiv:2010.12392.
  6. Bakalov B., Kirillov Jr. A., Lectures on tensor categories and modular functors, Univ. Lecture Ser., Vol. 21, Amer. Math. Soc., Providence, RI, 2001.
  7. Bantay P., The kernel of the modular representation and the Galois action in RCFT, Comm. Math. Phys. 233 (2003), 423-438, arXiv:math.QA/0102149.
  8. Bantay P., Modular differential equations for characters of RCFT, J. High Energy Phys. 2010 (2010), no. 6, 021, 17 pages, arXiv:1004.2579.
  9. Bantay P., Gannon T., Conformal characters and the modular representation, J. High Energy Phys. 2006 (2006), no. 2, 005, 18 pages, arXiv:hep-th/0512011.
  10. Bantay P., Gannon T., Vector-valued modular functions for the modular group and the hypergeometric equation, Commun. Number Theory Phys. 1 (2007), 651-680, arXiv:0705.2467.
  11. Bauer M., Coste A., Itzykson C., Ruelle P., Comments on the links between ${\rm su}(3)$ modular invariants, simple factors in the Jacobian of Fermat curves, and rational triangular billiards, J. Geom. Phys. 22 (1997), 134-189, arXiv:hep-th/9604104.
  12. Baxter R.J., Hard hexagons: exact solution, J. Phys. A 13 (1980), L61-L70.
  13. Borcherds R.E., Vertex algebras, Kac-Moody algebras, and the Monster, Proc. Nat. Acad. Sci. USA 83 (1986), 3068-3071.
  14. Calegari F., Dimitrov V., Tang Y., The unbounded denominator conjecture, arXiv:2109.09040.
  15. Candelori L., Franc C., Vector-valued modular forms and the modular orbifold of elliptic curves, Int. J. Number Theory 13 (2017), 39-63, arXiv:1506.09192.
  16. Cardy J.L., Operator content of two-dimensional conformally invariant theories, Nuclear Phys. B 270 (1986), 186-204.
  17. Codogni G., Vertex algebras and Teichmüller modular forms, arXiv:1901.03079.
  18. Cohn P.M., Algebra, Vol. 2, Vol. 2, 2nd ed., John Wiley & Sons, Ltd., Chichester, 1989.
  19. Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, 3rd ed., Grundlehren Math. Wiss., Vol. 290, Springer-Verlag, New York, 1999.
  20. Creutzig T., Gannon T., Logarithmic conformal field theory, log-modular tensor categories and modular forms, J. Phys. A 50 (2017), 404004, 37 pages, arXiv:1605.04630.
  21. Creutzig T., Ridout D., Logarithmic conformal field theory: beyond an introduction, J. Phys. A 46 (2013), 494006, 72 pages, arXiv:1303.0847.
  22. Curtis C.W., Reiner I., Representation theory of finite groups and associative algebras, AMS Chelsea Publishing, Providence, RI, 2006.
  23. Dong C., Vertex algebras associated with even lattices, J. Algebra 161 (1993), 245-265.
  24. Dong C., Li H., Mason G., Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), 571-600, arXiv:q-alg/9509005.
  25. Dong C., Li H., Mason G., Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), 1-56, arXiv:q-alg/9703016.
  26. Dong C., Lin X., Ng S.H., Congruence property in conformal field theory, Algebra Number Theory 9 (2015), 2121-2166, arXiv:1201.6644.
  27. Dong C., Mason G., Holomorphic vertex operator algebras of small central charge, Pacific J. Math. 213 (2004), 253-266, arXiv:math.QA/0203005.
  28. Dong C., Mason G., Rational vertex operator algebras and the effective central charge, Int. Math. Res. Not. 2004 (2004), 2989-3008, arXiv:math.QA/0201318.
  29. Dong C., Mason G., Shifted vertex operator algebras, Math. Proc. Cambridge Philos. Soc. 141 (2006), 67-80, arXiv:math.QA/0411526.
  30. Eholzer W., Skoruppa N.P., Conformal characters and theta series, Lett. Math. Phys. 35 (1995), 197-211, arXiv:hep-th/9410077.
  31. Eholzer W., Skoruppa N.P., Modular invariance and uniqueness of conformal characters, Comm. Math. Phys. 174 (1995), 117-136, arXiv:hep-th/9407074.
  32. Flohr M., Operator product expansion in logarithmic conformal field theory, Nuclear Phys. B 634 (2002), 511-545, arXiv:hep-th/0107242.
  33. Flohr M.A.I., Bits and pieces in logarithmic conformal field theory, Internat. J. Modern Phys. A 18 (2003), 4497-4591, arXiv:hep-th/0111228.
  34. Franc C., Mason G., Fourier coefficients of vector-valued modular forms of dimension 2, Canad. Math. Bull. 57 (2014), 485-494, arXiv:1304.4288.
  35. Franc C., Mason G., Hypergeometric series, modular linear differential equations and vector-valued modular forms, Ramanujan J. 41 (2016), 233-267, arXiv:1503.05519.
  36. Franc C., Mason G., Three-dimensional imprimitive representations of the modular group and their associated modular forms, J. Number Theory 160 (2016), 186-214, arXiv:1503.05520.
  37. Franc C., Mason G., On the structure of modules of vector-valued modular forms, Ramanujan J. 47 (2018), 117-139, arXiv:1509.07494.
  38. Franc C., Mason G., Classification of some vertex operator algebras of rank 3, Algebra Number Theory 14 (2020), 1613-1668, arXiv:1905.07500.
  39. Franc C., Mason G., Constructions of vector-valued modular forms of rank four and level one, Int. J. Number Theory 16 (2020), 1111-1152, arXiv:1810.09408.
  40. Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Adv. Pure Appl. Math., Vol. 134, Academic Press, Inc., Boston, MA, 1988.
  41. Frenkel I.B., Huang Y.Z., Lepowsky J., On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), viii+64 pages.
  42. Fuchs J., Schweigert C., Full logarithmic conformal field theory-an attempt at a status report, Fortschr. Phys. 67 (2019), 1910018, 12 pages, arXiv:1903.02838.
  43. Gaberdiel M.R., An algebraic approach to logarithmic conformal field theory, Internat. J. Modern Phys. A 18 (2003), 4593-4638, arXiv:hep-th/0111260.
  44. Gaberdiel M.R., Hampapura H.R., Mukhi S., Cosets of meromorphic CFTs and modular differential equations, J. High Energy Phys. 2016 (2016), no. 4, 156, 13 pages, arXiv:1602.01022.
  45. Gaberdiel M.R., Keller C.A., Modular differential equations and null vectors, J. High Energy Phys. 2008 (2008), no. 9, 079, 29 pages, arXiv:0804.0489.
  46. Gainutdinov A.M., A generalization of the Verlinde formula in logarithmic conformal field theory, Theoret. and Math. Phys. 159 (2009), 575-586.
  47. Gainutdinov A.M., Jacobsen J.L., Read N., Saleur H., Vasseur R., Logarithmic conformal field theory: a lattice approach, J. Phys. A 46 (2013), 494012, 34 pages, arXiv:1303.2082.
  48. Gannon T., The theory of vector-valued modular forms for the modular group, in Conformal Field Theory, Automorphic Forms and Related Topics, Contrib. Math. Comput. Sci., Vol. 8, Springer, Heidelberg, 2014, 247-286, arXiv:1310.4458.
  49. Grady J.C., Lam C.H., Tener J.E., Yamauchi H., Classification of extremal vertex operator algebras with two simple modules, J. Math. Phys. 61 (2020), 052302, 19 pages, arXiv:1811.02180.
  50. Hampapura H.R., Mukhi S., Two-dimensional RCFT's without Kac-Moody symmetry, J. High Energy Phys. 2016 (2016), no. 7, 138, 19 pages, arXiv:1605.03314.
  51. Hecke E., Mathematische Werke, 3rd ed., Vandenhoeck & Ruprecht, Göttingen, 1983.
  52. Hirzebruch F., Berger T., Jung R., Manifolds and modular forms, Aspects of Mathematics, Vol. E20, Friedr. Vieweg & Sohn, Braunschweig, 1992.
  53. Höhn G., Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286, Universität Bonn, Mathematisches Institut, Bonn, 1996.
  54. Huang Y.Z., Vertex operator algebras and the Verlinde conjecture, Commun. Contemp. Math. 10 (2008), 103-154, arXiv:math.QA/0406291.
  55. Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
  56. Kaidi J., Lin Y.H., Parra-Martinez J., Holomorphic modular bootstrap revisited, J. High Energy Phys. 2021 (2021), no. 12, 151, 48 pages, arXiv:2107.13557.
  57. Kawai S., Wheater J.F., Modular transformation and boundary states in logarithmic conformal field theory, Phys. Lett. B 508 (2001), 203-210, arXiv:hep-th/0103197.
  58. Knopp M., Mason G., Vector-valued modular forms and Poincaré series, Illinois J. Math. 48 (2004), 1345-1366.
  59. Lam C.H., Shimakura H., 71 holomorphic vertex operator algebras of central charge 24, Bull. Inst. Math. Acad. Sin. (N.S.) 14 (2019), 87-118.
  60. Li H.S., Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (1994), 279-297.
  61. Marks C., Irreducible vector-valued modular forms of dimension less than six, Illinois J. Math. 55 (2011), 1267-1297, arXiv:1004.3019.
  62. Marks C., Mason G., Structure of the module of vector-valued modular forms, J. Lond. Math. Soc. 82 (2010), 32-48, arXiv:0901.4367.
  63. Mason G., Lattice subalgebras of strongly regular vertex operator algebras, in Conformal Field Theory, Automorphic Forms and Related Topics, Contrib. Math. Comput. Sci., Vol. 8, Springer, Heidelberg, 2014, 31-53, arXiv:1110.0544.
  64. Mason G., Vertex rings and their Pierce bundles, in Vertex Algebras and Geometry, Contemp. Math., Vol. 711, Amer. Math. Soc., Providence, RI, 2018, 45-104, arXiv:1707.00328.
  65. Mason G., Five not-so-easy pieces: open problems about vertex rings, in Vertex Operator Algebras, Number Theory and Related Topics, Contemp. Math., Vol. 753, Amer. Math. Soc., Providence, RI, 2020, 213-232, arXiv:1812.06206.
  66. Mason G., Nagatomo K., Sakai Y., Vertex operator algebras of rank 2 - the Mathur-Mukhi-Sen theorem revisited, Commun. Number Theory Phys. 15 (2021), 59-90.
  67. Mason G., Tuite M., Vertex operators and modular forms, in A Window Into Zeta and Modular Physics, Math. Sci. Res. Inst. Publ., Vol. 57, Cambridge University Press, Cambridge, 2010, 183-278, arXiv:0909.4460.
  68. Mathur S.D., Mukhi S., Sen A., On the classification of rational conformal field theories, Phys. Lett. B 213 (1988), 303-308.
  69. Mathur S.D., Mukhi S., Sen A., Reconstruction of conformal field theories from modular geometry on the torus, Nuclear Phys. B 318 (1989), 483-540.
  70. Nagatomo K., Mason G., Sakai Y., Vertex operator algebras with central charge 8 and 16, in Vertex Operator Algebras, Number Theory and Related Topics,Contemp. Math., Vol. 753, Amer. Math. Soc., Providence, RI, 2020, 157-186, arXiv:1812.06357.
  71. Nagi J., Operator algebra in logarithmic conformal field theory, Phys. Rev. D 72 (2005), 086004, 9 pages, arXiv:hep-th/0507242.
  72. Ng S.H., Wang Y., Wilson S., On symmetric representations of $\mathbf{SL}_2(\mathbf{Z})$, arXiv:2203.15701.
  73. Niemeier H.V., Definite quadratische Formen der Dimension $24$ und Diskriminante $1$, J. Number Theory 5 (1973), 142-178.
  74. Rankin R.A., Modular forms and functions, Cambridge University Press, Cambridge - New York - Melbourne, 1977.
  75. Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer-Verlag London, Ltd., London, 2007.
  76. Schellekens A.N., Meromorphic $c=24$ conformal field theories, Comm. Math. Phys. 153 (1993), 159-185, arXiv:hep-th/9205072.
  77. Serre J.P., A course in arithmetic, Grad. Texts in Math., Vol. 7, Springer-Verlag, New York - Heidelberg, 1973.
  78. Sloane N.J.A., The on-line encyclopedia of integer sequences, 2020,
  79. Tuba I., Wenzl H., Representations of the braid group $B_3$ and of ${\rm SL}(2,{\bf Z})$, Pacific J. Math. 197 (2001), 491-510, arXiv:math.RT/9912013.
  80. Vidunas R., Dihedral Gauss hypergeometric functions, Kyushu J. Math. 65 (2011), 141-167, arXiv:0807.4888.
  81. Zagier D., Elliptic modular forms and their applications, in The 1-2-3 of Modular Forms, Universitext, Springer, Berlin, 2008, 1-103.
  82. Zhu Y., Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237-302.

Previous article  Next article  Contents of Volume 18 (2022)