Satur Oksana
Publications
1. Koshmanenko V.D., Satur O.R. Sure event problem in multicomponent dynamical systems with attractive
interaction // Journal of Mathematical Sciences. – 2020. – 249, No.4. – P. 629–646.
https://doi.org/10.1007/s10958-020-04962-3
2. Satur O.R., Kharchenko N.V. The model of dynamical system for the attainment of consensus // Ukrainian Mathematical Journal. – 2020. – 71, No.9. – P. 1456–1469. https://doi.org/10.1007/s11253-020-01725-w
3. Koshmanenko V., Satur O., Voloshyna V. Point spectrum in conflict dynamical systems with fractal partition // Methods of Functional Analysis and Topology. – 2019. – 25, No.4. – P. 324–338.
4. Satur O.R. Limit states of multicomponent discrete dynamical systems // J Math Sci. – 2021. – 256. P. 648–662. https://doi.org/10.1007/s10958-021-05451-x
5. Satur O.R. Dependence of the Behaviors of Trajectories of Dynamic Conflict Systems on the Interaction Vector // J Math Sci. – 2023. – 274. – P. 76–93. https://doi.org/10.1007/s10958-023-06572-1
6. Satur O. Convergence to equilibrium attractor in models of dynamic confl ict systems with attractive interaction // Reports of the National Academy of Sciences of Ukraine. – 2023. – 3. – P. 3–8. https://doi.org/10.15407/dopovidi2023.03.003
interaction // Journal of Mathematical Sciences. – 2020. – 249, No.4. – P. 629–646.
https://doi.org/10.1007/s10958-020-04962-3
2. Satur O.R., Kharchenko N.V. The model of dynamical system for the attainment of consensus // Ukrainian Mathematical Journal. – 2020. – 71, No.9. – P. 1456–1469. https://doi.org/10.1007/s11253-020-01725-w
3. Koshmanenko V., Satur O., Voloshyna V. Point spectrum in conflict dynamical systems with fractal partition // Methods of Functional Analysis and Topology. – 2019. – 25, No.4. – P. 324–338.
4. Satur O.R. Limit states of multicomponent discrete dynamical systems // J Math Sci. – 2021. – 256. P. 648–662. https://doi.org/10.1007/s10958-021-05451-x
5. Satur O.R. Dependence of the Behaviors of Trajectories of Dynamic Conflict Systems on the Interaction Vector // J Math Sci. – 2023. – 274. – P. 76–93. https://doi.org/10.1007/s10958-023-06572-1
6. Satur O. Convergence to equilibrium attractor in models of dynamic confl ict systems with attractive interaction // Reports of the National Academy of Sciences of Ukraine. – 2023. – 3. – P. 3–8. https://doi.org/10.15407/dopovidi2023.03.003