Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 010, 34 pages      arXiv:2303.04013      https://doi.org/10.3842/SIGMA.2024.010
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday

A Pseudodifferential Analytic Perspective on Getzler's Rescaling

Georges Habib ab and Sylvie Paycha c
a) Department of Mathematics, Faculty of Sciences II, Lebanese University, P.O. Box, 90656 Fanar-Matn, Lebanon
b) Université de Lorraine, CNRS, IECL, France
c) Institut für Mathematik, Universität Potsdam, Campus Golm, Haus 9, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany

Received March 08, 2023, in final form January 11, 2024; Published online January 30, 2024

Abstract
Inspired by Gilkey's invariance theory, Getzler's rescaling method and Scott's approach to the index via Wodzicki residues, we give a localisation formula for the $\mathbb Z_2$-graded Wodzicki residue of the logarithm of a class of differential operators acting on sections of a spinor bundle over an even-dimensional manifold. This formula is expressed in terms of another local density built from the symbol of the logarithm of a limit of rescaled differential operators acting on differential forms. When applied to complex powers of the square of a Dirac operator, it amounts to expressing the index of a Dirac operator in terms of a local density involving the logarithm of the Getzler rescaled limit of its square.

Key words: index; Dirac operator; Wodzicki residue; spinor bundle.

pdf (653 kb)   tex (41 kb)  

References

  1. Ammann B., Grosjean J.F., Humbert E., Morel B., A spinorial analogue of Aubin's inequality, Math. Z. 260 (2008), 127-151, arXiv:math.DG/0308107.
  2. Atiyah M., Bott R., Patodi V.K., On the heat equation and the index theorem, Invent. Math. 19 (1973), 279-330.
  3. Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundlehren Text Ed., Springer, Berlin, 2004.
  4. Bourguignon J.-P., Hijazi O., Milhorat J.-L., Moroianu A., Moroianu S., A spinorial approach to Riemannian and conformal geometry, EMS Monogr. Math., European Mathematical Society (EMS), Zürich, 2015.
  5. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  6. Debord C., Skandalis G., Adiabatic groupoid, crossed product by $\mathbb{R}_+^\ast$ and pseudodifferential calculus, Adv. Math. 257 (2014), 66-91, arXiv:1307.6320.
  7. Debord C., Skandalis G., Blow-up constructions for Lie groupoids and a Boutet de Monvel type calculus, Münster J. Math. 14 (2021), 1-40, arXiv:1705.09588.
  8. Epstein D.B.A., Natural tensors on Riemannian manifolds, J. Differential Geometry 10 (1975), 631-645.
  9. Freed D., Lectures on Dirac operators, Unpublished notes, 1987, available at https://web.ma.utexas.edu/users/dafr/DiracNotes.pdf.
  10. Getzler E., A short proof of the local Atiyah-Singer index theorem, Topology 25 (1986), 111-117.
  11. Gilkey P.B., Invariance theory, the heat equation, and the Atiyah-Singer index theorem, 2nd ed., Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.
  12. Higson N., The tangent groupoid and the index theorem, in Quanta of Maths, Clay Math. Proc., Vol. 11, American Mathematical Society, Providence, RI, 2010, 241-256.
  13. Higson N., Yi Z., Spinors and the tangent groupoid, Doc. Math. 24 (2019), 1677-1720, arXiv:1902.08351.
  14. Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
  15. Mickelsson J., Paycha S., The logarithmic residue density of a generalized Laplacian, J. Aust. Math. Soc. 90 (2011), 53-80, arXiv:1008.3039.
  16. Scott S., Traces and determinants of pseudodifferential operators, Oxford Math. Monogr., Oxford University Press, Oxford, 2010.
  17. Shubin M.A., Pseudo-differential operators and spectral theory, Springer, Berlin, 2001.
  18. van Erp E., Yuncken R., A groupoid approach to pseudodifferential calculi, J. Reine Angew. Math. 756 (2019), 151-182, arXiv:1511.01041.
  19. Wodzicki M., Noncommutative residue. I. Fundamentals, in $K$-theory, Arithmetic and Geometry (Moscow, 1984-1986), Lecture Notes in Math., Vol. 1289, Springer, Berlin, 1987, 320-399.

Previous article  Next article  Contents of Volume 20 (2024)