Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 20 (2024), 009, 19 pages      arXiv:2402.00507      https://doi.org/10.3842/SIGMA.2024.009
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday

Taking Music Seriously: on the Dynamics of 'Mathemusical' Research with a Focus on Hexachordal Theorems

Moreno Andreatta a, Corentin Guichaoua b and Nicolas Juillet c
a) IRMA-CNRS-CREAA-University of Strasbourg and IRCAM, Paris, France
b) Independent Researcher, SMIR Project, France
c) IRIMAS, Université de Haute-Alsace, France

Received July 01, 2023, in final form January 11, 2024; Published online January 25, 2024

Abstract
After presenting the general framework of `mathemusical' dynamics, we focus on one music-theoretical problem concerning a special case of homometry theory applied to music composition, namely Milton Babbitt's hexachordal theorem. We briefly discuss some historical aspects of homometric structures and their ramifications in crystallography, spectral analysis and music composition via the construction of rhythmic canons tiling the integer line. We then present the probabilistic generalization of Babbitt's result we recently introduced in a paper entitled ''New hexachordal theorems in metric spaces with probability measure'' and illustrate the new approach with original constructions and examples.

Key words: mathemusical research; homometric sets; distance-sets; metric measure spaces; ball volume; scalar curvature; Patterson function.

pdf (841 kb)   tex (514 kb)  

References

  1. Althuis T.A., Göbel F., Graph theoretic aspects of music theory, University of Twente, Memorandum no. 1573, 2001, available at https://research.utwente.nl/files/5115800/1573.pdf.
  2. Amiot E., Une preuve élégante du théorème de Babbitt par transformée de Fourier discrète, Quadrature 61 (2006), 1-4.
  3. Amiot E., David Lewin and maximally even sets, J. Math. Music 1 (2007), 157-172.
  4. Amiot E., New perspectives on rhythmic canons and the spectral conjecture, J. Math. Music 3 (2009), 71-84.
  5. Amiot E., Music through Fourier space: Discrete Fourier transform in music theory, Comput. Music Sci., Springer, Cham, 2016.
  6. Amiot E., Rahn J. (Editors), Tiling rhythmic canons, Perspect. New Music 49 (2011), 6-273, available at https://muse.jhu.edu/issue/43618.
  7. Andreatta M., Méthodes algébriques en musique et musicologie du XXe siècle: aspects théoriques, analytiques et compositionnels, Ph.D. Thesis, EHESS-IRCAM, Paris, 2003.
  8. Andreatta M., Une introduction musicologique à la recherche mathémusicale, Circuit 24 (2014), 51-66.
  9. Andreatta M., Tiling canons as a key to approach open mathematical conjectures?, in Mathemusical Conversations, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., Vol. 32, Wiley, 2015, 86-104.
  10. Andreatta M., Agon C. (Editors), Special issue: Tiling problems in music, J. Math. Music 3 (2009), 63-70.
  11. Andreatta M., Bardez J.-M., Rahn J. (Editors), Around set theory. A French/American musicological meeting, Delatour France, Sampzon, 2008.
  12. Andreatta M., Baroin G., An introduction on formal and computational models in popular music analysis and generation, in Aesthetics and Neuroscience: Scientific and Artistic Perspectives, Springer, Cham, 2016, 257-269.
  13. Andreatta M., Guichaoua C., Juillet N., New hexachordal theorems in metric spaces with probability measure, Rend. Semin. Mat. Univ. Padova, to appear.
  14. Andreatta M., Vuza D.T., On some properties of periodic sequences in Anatol Vieru's modal theory, Tatra Mt. Math. Publ. 23 (2001), 1-15.
  15. Assayag G., Feichtinger H.G., Rodrigues J.F. (Editors), Mathematics and music: A Diderot mathematical forum, Springer, Berlin, 2002.
  16. Babbitt M., Some aspects of twelve-tone composition, The Score 12 (1955), 53-61.
  17. Ballinger B., Benbernou N., Gomez F., O'Rourke J., Toussaint G., The continuous hexachordal theorem, in Mathematics and Computation in Music, Commun. Comput. Inf. Sci., Vol. 38, Editors E. Chew, A. Childs, C.H. Chuan, Springer, New Haven, 2009, 11-21.
  18. Blau S.K., The hexachordal theorem: a mathematical look at interval relations in twelve-tone composition, Math. Mag. 72 (1999), 310-313.
  19. Boulez P., Connes A., Creativity in music and mathematics, A meeting organized within the Mathematics and Computation in Music Conference at IRCAM (15 June 2011), Video available at http://agora2011.ircam.fr.
  20. Buerger M.J., Proofs and generalizations of Patterson's theorems on homometric complementary sets, Z. Kristallographie 143 (1976), 79-98.
  21. Coven E.M., Meyerowitz A., Tiling the integers with translates of one finite set, J. Algebra 212 (1999), 161-174, arXiv:math/9802122.
  22. de Bruijn N.G., On bases for the set of integers, Publ. Math. Debrecen 1 (1950), 232-242.
  23. Fauvel J., Flood R., Wilson R. (Editors), Music and mathematics: From Pythagoras to fractals, Oxford University Press, Oxford, 2006.
  24. Forte A., The structure of atonal music, Yale University Press, 1973.
  25. Fox R.H., Solution by R.H. Fox, Canad. Math. Bull. 7 (1964), 623-626.
  26. Freund A., Andreatta M., Giavitto J.-L., Lattice-based and topological representations of binary relations with an application to music, Ann. Math. Artif. Intell. 73 (2015), 311-334.
  27. Fuglede B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101-121.
  28. Ghisi D., Vettori intervallari: Non degenerazione e Z-relation, Masters Thesis, University of Milano Bicocca, Italy, 2006.
  29. Goyette J., The Z-relation in theory and practice, Ph.D. Thesis, University of Rochester, 2012.
  30. Hajós G., Sur la factorisation des groupes abéliens, Časopis Pĕst. Mat. 74 (1949), 157-162.
  31. Jedrzejewski F., Andreatta M., Johnson T., Musical experiences with block designs, in Mathematics and Computation in Music, Commun. Comput. Inf. Sci., Vol. 38, Springer, New Haven, 2009, 154-165.
  32. Jedrzejewski F., Johnson T., The structure of Z-related sets, in Mathematics and Computation in Music, Lecture Notes in Comput. Sci., Vol. 7937, Springer, Heidelberg, 2013, 128-137, arXiv:1304.6608.
  33. Kolountzakis M.N., Matolcsi M., Tessellations by translation, Gac. R. Soc. Mat. Esp. 13 (2010), 725-746.
  34. Kowalski O., Preiss D., Besicovitch-type properties of measures and submanifolds, J. Reine Angew. Math. 379 (1987), 115-151.
  35. Lanzarotto G., Extended vuza canons, Ph.D. Thesis, University of Padova, Université de Strasbourg 2022.
  36. Lascabettes P., Agon C., Andreatta M., Bloch I., Computational analysis of musical structures based on morphological filters, in Mathematics and Computation in Music, Lecture Notes in Comput. Sci., Vol. 13267, Springer, Cham, 2022, 267-278.
  37. Lev N., Matolcsi M., The Fuglede conjecture for convex domains is true in all dimensions, Acta Math. 228 (2022), 385-420, arXiv:1904.12262.
  38. Lewin D., Re: Intervalic relations between two collections of notes, J. Music Theory 3 (1959), 298-301.
  39. Lewin D., Generalized musical intervals and transformations, 2nd ed., Oxford University Press, Oxford, 2007.
  40. Mandereau J., Ghisi D., Amiot E., Andreatta M., Agon C., Discrete phase retrieval in musical structures, J. Math. Music 5 (2011), 99-116.
  41. Mandereau J., Ghisi D., Amiot E., Andreatta M., Agon C., $Z$-relation and homometry in musical distributions, J. Math. Music 5 (2011), 83-98.
  42. McCartin B.J., Geometric proofs of the complementary chords theorems, Int. Math. Forum 11 (2016), 27-39.
  43. Meredith D. (Editor), Computational music analysis, Springer, Cham, 2016.
  44. Patterson L., Homometric structures, Nature 143 (1939), 939-940.
  45. Patterson L., Ambiguities in the X-ray analysis of crystal structures, Phys. Rev. 65 (1944), 195-201.
  46. Peeters G., Roadmap for music information research, 2013, unpublished.
  47. Popoff A., Andreatta M., Ehresmann A., Relational poly-Klumpenhouwer networks for transformational and voice-leading analysis, J. Math. Music 12 (2018), 35-55.
  48. Rosenblatt J., Seymour P.D., The structure of homometric sets, SIAM J. Algebraic Discrete Methods 3 (1982), 343-350.
  49. Tao T., Fuglede's conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), 251-258, arXiv:math.CO/0306134.
  50. Tymoczko D., A geometry of music, Oxf. Stud. Music Theory, Oxford University Press, Oxford, 2011.
  51. Wang M., Homologie persistante appliquée à l'analyse automatique des styles musicaux, Ph.D. Thesis, Université de Bordeaux et Université de Strasbourg, 2023.
  52. Wilcox H.J., Group tables and the generalized hexachord theorem, Perspect. New Music 21 (1983), 535-539.

Previous article  Next article  Contents of Volume 20 (2024)