Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 106, 28 pages      arXiv:2211.11429      https://doi.org/10.3842/SIGMA.2023.106

Manifolds of Lie-Group-Valued Cocycles and Discrete Cohomology

Alexandru Chirvasitu and Jun Peng
Department of Mathematics, University at Buffalo, Buffalo, NY 14260-2900, USA

Received June 18, 2023, in final form December 01, 2023; Published online December 24, 2023

Abstract
Consider a compact group $G$ acting on a real or complex Banach Lie group $U$, by automorphisms in the relevant category, and leaving a central subgroup $K\le U$ invariant. We define the spaces ${}_KZ^n(G,U)$ of $K$-relative continuous cocycles as those maps ${G^n\to U}$ whose coboundary is a $K$-valued $(n+1)$-cocycle; this applies to possibly non-abelian $U$, in which case $n=1$. We show that the ${}_KZ^n(G,U)$ are analytic submanifolds of the spaces $C(G^n,U)$ of continuous maps $G^n\to U$ and that they decompose as disjoint unions of fiber bundles over manifolds of $K$-valued cocycles. Applications include: (a) the fact that ${Z^n(G,U)\subset C(G^n,U)}$ is an analytic submanifold and its orbits under the adjoint of the group of $U$-valued $(n-1)$-cochains are open; (b) hence the cohomology spaces $H^n(G,U)$ are discrete; (c) for unital $C^*$-algebras $A$ and $B$ with $A$ finite-dimensional the space of morphisms $A\to B$ is an analytic manifold and nearby morphisms are conjugate under the unitary group $U(B)$; (d) the same goes for $A$ and $B$ Banach, with $A$ finite-dimensional and semisimple; (e) and for spaces of projective representations of compact groups in arbitrary $C^*$ algebras (the last recovering a result of Martin's).

Key words: Banach Lie group; Lie algebra; group cohomology; cocycle; coboundary; infinite-dimensional manifold; immersion; analytic; $C^*$-algebra; unitary group; Banach algebra; semisimple; Jacobson radical.

pdf (548 kb)   tex (38 kb)  

References

  1. Adámek J., Rosický J., Locally presentable and accessible categories, London Math. Soc. Lecture Note Ser, Vol. 189, Cambridge University Press, Cambridge, 1994.
  2. An J., Wang Z., Nonabelian cohomology with coefficients in Lie groups, Trans. Amer. Math. Soc. 360 (2008), 3019-3040, arXiv:math.GR/0506625.
  3. Andruchow E., Corach G., Stojanoff D., A geometric characterization of nuclearity and injectivity, J. Funct. Anal. 133 (1995), 474-494.
  4. Arveson W., An invitation to $C^*$-algebras, Grad. Texts in Math., Vol. 39, Springer, New York, 1976.
  5. Baird T.J., Cohomology of the space of commuting $n$-tuples in a compact Lie group, Algebr. Geom. Topol. 7 (2007), 737-754, arXiv:math.AT/0610761.
  6. Black P., big-O notation, available at https://www.nist.gov/dads/HTML/bigOnotation.html.
  7. Borel A., Semisimple groups and Riemannian symmetric spaces, Texts Read. Math., Vol. 16, Hindustan Book Agency, New Delhi, 1998.
  8. Bourbaki N., Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 `a 7), Actualités Sci. Indust., Vol. 1333, Hermann, Paris, 1967.
  9. Bourbaki N., Éléments de mathématique. Fasc. XXXVI. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 8 `a 15), Actualités Sci. Indust., Vol. 1347, Hermann, Paris, 1971.
  10. Bourbaki N., Lie groups and Lie algebras: Chapters 1-3, Springer, Berlin, 1989.
  11. Brown K.S., Cohomology of groups, Grad. Texts in Math., Vol. 87, Springer, New York, 1982.
  12. Caenepeel S., Militaru G., Zhu S., Frobenius and separable functors for generalized module categories and nonlinear equations, Lecture Notes in Math, Vol. 1787, Springer, Berlin, 2002.
  13. Corach G., Galé J.E., Averaging with virtual diagonals and geometry of representations, in Banach Algebras 97, De Gruyter, Berlin, 1998, 87-100.
  14. Corach G., Galé J.E., On amenability and geometry of spaces of bounded representations, J. Lond. Math. Soc. 59 (1999), 311-329.
  15. Dales H.G., Banach algebras and automatic continuity, London Math. Soc. Monog. New Series, Vol. 24, The Clarendon Press, Oxford University Press, New York, 2000.
  16. Dales H.G., Aiena P., Eschmeier J., Laursen K., Willis G.A., Introduction to Banach algebras, operators, and harmonic analysis, London Math. Soc. Stud. Texts, Vol. 57, Cambridge University Press, Cambridge, 2003.
  17. Eisenbud D., Harris J., 3264 and all that. A second course in algebraic geometry, Cambridge University Press, Cambridge, 2016.
  18. Evens L., The cohomology of groups, Oxford Math. Monog., The Clarendon Press, Oxford University Press, New York, 1991.
  19. Fulton W., Harris J., Representation theory. A first course, Grad. Texts in Math., Vol. 129, Springer, New York, 1991.
  20. Ginzburg V., Lectures on noncommutative geometry, arXiv:math.AG/0506603.
  21. Hofmann K.H., Morris S.A., The structure of compact groups. A primer for the student - a handbook for the expert, De Gruyter Stud. Math., Vol. 25, De Gruyter, Berlin, 2020.
  22. Iwasawa K., On some types of topological groups, Ann. of Math. 50 (1949), 507-558.
  23. Johnson B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., Vol. 127, American Mathematical Society, Providence, RI, 1972.
  24. Lam T.Y., A first course in noncommutative rings, Grad. Texts in Math., Vol. 131, Springer, New York, 2001.
  25. Lang S., Fundamentals of differential geometry, Grad. Texts in Math., Vol. 191, Springer, New York, 1999.
  26. Lawton S., Sikora A.S., Varieties of characters, Algebr. Represent. Theory 20 (2017), 1133-1141, arXiv:1604.02164.
  27. Martin M., Projective representations of compact groups in $C^*$-algebras, in Linear Operators in Function Spaces, Oper. Theory Adv. Appl., Vol. 43, Birkhäuser, Basel, 1990, 237-253.
  28. Milnor J.W., Stasheff J.D., Characteristic classes, Ann. of Math. Stud., Vol. 76, Princeton University Press, Princeton, NJ, 1974.
  29. Montgomery D., Zippin L., A theorem on Lie groups, Bull. Amer. Math. Soc. 48 (1942), 448-452.
  30. Moore C.C., Extensions and low dimensional cohomology theory of locally compact groups. I, Trans. Amer. Math. Soc. 113 (1964), 40-63.
  31. Mumford D., Fogarty J., Kirwan F., Geometric invariant theory, Ergeb. Math. Grenzgeb. (2), Vol. 34, Springer, Berlin, 1994.
  32. Munkres J.R., Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.
  33. Neeb K.-H., Infinite-dimensional groups and their representations, in Lie Theory, Progr. Math., Vol. 228, Birkhäuser Boston, Boston, MA, 2004, 213-328.
  34. Neeb K.-H., Towards a Lie theory of locally convex groups, Jpn. J. Math. 1 (2006), 291-468, arXiv:1501.06269.
  35. Omori H., Infinite-dimensional Lie groups, Transl. Math. Monogr., Vol. 158, American Mathematical Society, Providence, RI, 1997.
  36. Pierce R.S., Associative algebras, Grad. Texts in Math., Vol. 88, Springer, New York, 1982.
  37. Pothoven K., Projective and injective objects in the category of Banach spaces, Proc. Amer. Math. Soc. 22 (1969), 437-438.
  38. Pressley A., Segal G., Loop groups, Oxford Math. Monog., The Clarendon Press, Oxford University Press, New York, 1986.
  39. Rotman J.J., An introduction to homological algebra, Universitext, Springer, New York, 2009.
  40. Runde V., Lectures on amenability, Lecture Notes in Math., Vol. 1774, Springer, Berlin, 2002.
  41. Ryan R.A., Introduction to tensor products of Banach spaces, Springer Monogr. Math., Springer, London, 2002.
  42. Serre J.-P., Local fields, Grad. Texts in Math., Vol. 67, Springer, New York, 1979.
  43. Serre J.-P., Lie algebras and Lie groups: 1964 lectures given at Harvard University, Lecture Notes in Math., Vol. 1500, Springer, Berlin, 1992.
  44. Serre J.-P., Galois cohomology, Springer, Berlin, 1997.
  45. Takesaki M., Theory of operator algebras II, Encyclopaedia Math. Sci., Vol. 125, Springer, Berlin, 2003.
  46. Torres Giese E., Sjerve D., Fundamental groups of commuting elements in Lie groups, Bull. Lond. Math. Soc. 40 (2008), 65-76.
  47. Upmeier H., Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Math. Stud., Vol. 104, North-Holland Publishing Co., Amsterdam, 1985.
  48. Wegge-Olsen N.E., $K$-theory and $C^*$-algebras. A friendly approach, Oxford Sci. Publ., The Clarendon Press, Oxford University Press, New York, 1993.
  49. Wilansky A., Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978.

Previous article  Next article  Contents of Volume 19 (2023)