Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 105, 39 pages      arXiv:2201.10284      https://doi.org/10.3842/SIGMA.2023.105

Twist Automorphisms and Poisson Structures

Yoshiyuki Kimura a, Fan Qin b and Qiaoling Wei c
a) Faculty of Liberal Arts, Sciences and Global Education, Osaka Metropolitan University, Japan
b) School of Mathematical Sciences, Beijing Normal University, P.R. China
c) School of Mathematical Sciences, Capital Normal University, P.R. China

Received April 03, 2023, in final form December 01, 2023; Published online December 23, 2023

Abstract
We introduce (quantum) twist automorphisms for upper cluster algebras and cluster Poisson algebras with coefficients. Our constructions generalize the twist automorphisms for quantum unipotent cells. We study their existence and their compatibility with Poisson structures and quantization. The twist automorphisms always permute well-behaved bases for cluster algebras. We explicitly construct (quantum) twist automorphisms of Donaldson-Thomas type and for principal coefficients.

Key words: cluster algebras; twist automorphisms; Poisson algebras.

pdf (728 kb)   tex (58 kb)  

References

  1. Allegretti D.G.L., Categorified canonical bases and framed BPS states, Selecta Math. (N. S.) 25 (2019), 69, 50 pages, arXiv:1806.10394.
  2. Berenstein A., Fomin S., Zelevinsky A., Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49-149.
  3. Berenstein A., Fomin S., Zelevinsky A., Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52, arXiv:math.RT/0305434.
  4. Berenstein A., Zelevinsky A., Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), 128-166.
  5. Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math. 195 (2005), 405-455, arXiv:math.QA/0404446.
  6. Chang W., Schiffler R., Cluster automorphisms and quasi-automorphisms, Adv. in Appl. Math. 110 (2019), 342-374, arXiv:1808.02108.
  7. Derksen H., Weyman J., Zelevinsky A., Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749-790, arXiv:0904.0676.
  8. Dupont G., Generic variables in acyclic cluster algebras, J. Pure Appl. Algebra 215 (2011), 628-641, arXiv:1006.0166.
  9. Fock V.V., Goncharov A.B., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), 1-211, arXiv:math.AG/0311149.
  10. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930, arXiv:math.AG/0311245.
  11. Fock V.V., Goncharov A.B., The quantum dilogarithm and representations of quantum cluster varieties, Invent. Math. 175 (2009), 223-286, arXiv:math.QA/0702397.
  12. Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. Part I: Cluster complexes, Acta Math. 201 (2008), 83-146, arXiv:math.RA/0608367.
  13. Fomin S., Zelevinsky A., Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
  14. Fraser C., Quasi-homomorphisms of cluster algebras, Adv. in Appl. Math. 81 (2016), 40-77, arXiv:1509.05385.
  15. Geiß C., Leclerc B., Schröer J., Kac-Moody groups and cluster algebras, Adv. Math. 228 (2011), 329-433, arXiv:1001.3545.
  16. Geiß C., Leclerc B., Schröer J., Generic bases for cluster algebras and the Chamber Ansatz, J. Amer. Math. Soc. 25 (2012), 21-76, arXiv:1004.2781.
  17. Geiß C., Leclerc B., Schröer J., Cluster structures on quantum coordinate rings, Selecta Math. (N. S.) 19 (2013), 337-397, arXiv:1104.0531.
  18. Gekhtman M., Nakanishi T., Rupel D., Hamiltonian and Lagrangian formalisms of mutations in cluster algebras and application to dilogarithm identities, J. Integrable Syst. 2 (2017), xyx005, 35 pages, arXiv:1611.02813.
  19. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), 899-934, arXiv:math.QA/0208033.
  20. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311, arXiv:math.QA/0309138.
  21. Goodearl K.R., Yakimov M.T., Quantum cluster algebra structures on quantum nilpotent algebras, Mem. Amer. Math. Soc. 247 (2017), vii+119 pages, arXiv:1309.7869.
  22. Goodearl K.R., Yakimov M.T., The Berenstein-Zelevinsky quantum cluster algebra conjecture, J. Eur. Math. Soc. (JEMS) 22 (2020), 2453-2509, arXiv:1602.00498.
  23. Goodearl K.R., Yakimov M.T., Integral quantum cluster structures, Duke Math. J. 170 (2021), 1137-1200, arXiv:2003.04434.
  24. Gross M., Hacking P., Keel S., Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), 137-175, arXiv:1309.2573.
  25. Gross M., Hacking P., Keel S., Kontsevich M., Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497-608, arXiv:1411.1394.
  26. Ip I.C.H., Cluster realization of $\mathcal{U_q(\mathfrak{g})}$ and factorizations of the universal $R$-matrix, Selecta Math. (N. S.) 24 (2018), 4461-4553, arXiv:1612.05641.
  27. Kang S.-J., Kashiwara M., Kim M., Oh S.-J., Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), 349-426, arXiv:1412.8106.
  28. Kashiwara M., On crystal bases of the $Q$-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516.
  29. Kashiwara M., Kim M., Laurent phenomenon and simple modules of quiver Hecke algebras, Compos. Math. 155 (2019), 2263-2295, arXiv:1811.02237.
  30. Keller B., On cluster theory and quantum dilogarithm identities, in Representations of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 85-116, arXiv:1102.4148.
  31. Keller B., Cluster algebras and derived categories, in Derived Categories in Algebraic Geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 123-183, arXiv:1202.4161.
  32. Kimura Y., Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math. 52 (2012), 277-331, arXiv:1010.4242.
  33. Kimura Y., Oya H., Twist automorphisms on quantum unipotent cells and dual canonical bases, Int. Math. Res. Not. 2021 (2021), 6772-6847, arXiv:1701.02268.
  34. Lusztig G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
  35. Lusztig G., Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365-421.
  36. Lusztig G., Semicanonical bases arising from enveloping algebras, Adv. Math. 151 (2000), 129-139.
  37. McNamara P., Cluster monomials are dual canonical, arXiv:2112.04109.
  38. Muller G., The existence of a maximal green sequence is not invariant under quiver mutation, Electron. J. Combin. 23 (2016), 2.47, 23 pages, arXiv:1503.04675.
  39. Muller G., Skein and cluster algebras of marked surfaces, Quantum Topol. 7 (2016), 435-503, arXiv:1204.0020.
  40. Nagao K., Donaldson-Thomas theory and cluster algebras, Duke Math. J. 162 (2013), 1313-1367, arXiv:1002.4884.
  41. Nakanishi T., Zelevinsky A., On tropical dualities in cluster algebras, in Algebraic Groups and Guantum Groups, Contemp. Math., Vol. 565, American Mathematical Society, Providence, RI, 2012, 217-226, arXiv:1101.3736.
  42. Plamondon P.-G., Generic bases for cluster algebras from the cluster category, Int. Math. Res. Not. 2013 (2013), 2368-2420, arXiv:1111.4431.
  43. Qin F., $t$-analog of $q$-characters, bases of quantum cluster algebras, and a correction technique, Int. Math. Res. Not. 2014 (2014), 6175-6232, arXiv:1207.6604.
  44. Qin F., Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. J. 166 (2017), 2337-2442, arXiv:1501.04085.
  45. Qin F., Bases for upper cluster algebras and tropical points, J. Eur. Math. Soc. (JEMS), to appear, arXiv:1902.09507.
  46. Qin F., Cluster algebras and their bases, arXiv:2108.09279.
  47. Qin F., Dual canonical bases and quantum cluster algebras, arXiv:2003.13674.
  48. Schrader G., Shapiro A., $K$-theoretic Coulomb branches of quiver gauge theories and cluster varieties, arXiv:1910.03186.
  49. Schrader G., Shapiro A., A cluster realization of $U_q(\mathfrak{sl}_n)$ from quantum character varieties, Invent. Math. 216 (2019), 799-846, arXiv:1607.00271.
  50. Scott J.S., Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (2006), 345-380, arXiv:math.CO/0311148.
  51. Shen L., Cluster nature of quantum groups, arXiv:2209.06258.
  52. Tran T., $F$-polynomials in quantum cluster algebras, Algebr. Represent. Theory 14 (2011), 1025-1061, arXiv:0904.3291.

Previous article  Next article  Contents of Volume 19 (2023)