Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 19 (2023), 102, 12 pages      arXiv:2306.00590
Contribution to the Special Issue on Global Analysis on Manifolds in honor of Christian Bär for his 60th birthday

A Note on the Spectrum of Magnetic Dirac Operators

Nelia Charalambous a and Nadine Große b
a) Department of Mathematics and Statistics, University of Cyprus, Nicosia, 1678, Cyprus
b) Mathematisches Institut, Universität Freiburg, 79100 Freiburg, Germany

Received June 02, 2023, in final form December 14, 2023; Published online December 22, 2023

In this article, we study the spectrum of the magnetic Dirac operator, and the magnetic Dirac operator with potential over complete Riemannian manifolds. We find sufficient conditions on the potentials as well as the manifold so that the spectrum is either maximal, or discrete. We also show that magnetic Dirac operators can have a dense set of eigenvalues.

Key words: Dirac operator; potentials; spectrum.

pdf (364 kb)   tex (20 kb)  


  1. Agmon S., Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigenfunctions of $N$-body Schrödinger operators, Math. Notes, Vol. 29, Princeton University Press, Princeton, NJ, 1982.
  2. Ammann B., Große N., $L^p$-spectrum of the Dirac operator on products with hyperbolic spaces, Calc. Var. Partial Differential Equations 55 (2016), 127, 36 pages, arXiv:1405.2830.
  3. Cecchini S., Zeidler R., Scalar curvature and generalized Callias operators, in Perspectives in Scalar Curvature, Vol. 1, World Scientific Publishing, Hackensack, NJ, 2023, 515-542.
  4. Charalambous N., Lu Z., On the spectrum of the Laplacian, Math. Ann. 359 (2014), 211-238, arXiv:1211.3225.
  5. Chernoff P.R., Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal. 12 (1973), 401-414.
  6. Chernoff P.R., Schrödinger and Dirac operators with singular potentials and hyperbolic equations, Pacific J. Math. 72 (1977), 361-382.
  7. Cycon H.L., Froese R.G., Kirsch W., Simon B., Schrödinger operators, with application to quantum mechanics and global geometry, Texts Monog. Phys., Springer, Berlin, 1987.
  8. Friedrich T., Dirac-Operatoren in der Riemannschen Geometrie. Mit einem Ausblick auf die Seiberg-Witten-Theorie, Adv. Lect. Math., Friedr. Vieweg & Sohn, Braunschweig, 1997.
  9. Ginoux N., The Dirac spectrum, Lecture Notes in Math., Vol. 1976, Springer, Berlin, 2009.
  10. Helffer B., Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Math., Vol. 1336, Springer, Berlin, 1988.
  11. Helffer B., Nourrigat J., Wang X.P., Sur le spectre de l'équation de Dirac (dans ${\mathbb R}^3$ ou ${\mathbb R}^2$) avec champ magnétique, Ann. Sci. École Norm. Sup. 22 (1989), 515-533.
  12. Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Math. Ser., Vol. 38, Princeton University Press, Princeton, NJ, 1989.
  13. Miller K., Simon B., Quantum magnetic Hamiltonians with remarkable spectral properties, Phys. Rev. Lett. 44 (1980), 1706-1707.
  14. Paeng S.-H., Relative volume comparison for asymptotically flat manifolds and rigidity of total mass, Ann. Global Anal. Geom. 56 (2019), 567-580.
  15. Reed M., Simon B., Methods of modern mathematical physics. IV. Analysis of operators, Academic Press, New York, 1978.
  16. Roe J., Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Math. Ser., Vol. 395, Longman, Harlow, 1998.
  17. Savale N., Koszul complexes, Birkhoff normal form and the magnetic Dirac operator, Anal. PDE 10 (2017), 1793-1844, arXiv:1511.08545.
  18. Savale N., A Gutzwiller type trace formula for the magnetic Dirac operator, Geom. Funct. Anal. 28 (2018), 1420-1486, arXiv:1806.10956.
  19. Shigekawa I., Eigenvalue problems for the Schrödinger operator with the magnetic field on a compact Riemannian manifold, J. Funct. Anal. 75 (1987), 92-127.
  20. Shigekawa I., Spectral properties of Schrödinger operators with magnetic fields for a spin $\frac12$ particle, J. Funct. Anal. 101 (1991), 255-285.
  21. Shubin M., Essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds, J. Funct. Anal. 186 (2001), 92-116, arXiv:math.SP/0007019.
  22. Simon B., Spectrum and continuum eigenfunctions of Schrödinger operators, J. Funct. Anal. 42 (1981), 347-355.
  23. Thaller B., The Dirac equation, Texts Monog. Phys., Springer, Berlin, 1992.
  24. Yamada O., On the spectrum of Dirac operators with the unbounded potential at infinity, Hokkaido Math. J. 26 (1997), 439-449.

Previous article  Next article  Contents of Volume 19 (2023)