Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 089, 47 pages      arXiv:2211.16772      https://doi.org/10.3842/SIGMA.2023.089

Non-Stationary Difference Equation and Affine Laumon Space: Quantization of Discrete Painlevé Equation

Hidetoshi Awata a, Koji Hasegawa b, Hiroaki Kanno ac, Ryo Ohkawa de, Shamil Shakirov fg, Jun'ichi Shiraishi h and Yasuhiko Yamada i
a) Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
b) Mathematical Institute, Tohoku University, Sendai 980-8578, Japan
c) Kobayashi-Maskawa Institute, Nagoya University, Nagoya 464-8602, Japan
d) Osaka Central Advanced Mathematical Institute, Osaka Metropolitan University, Osaka 558-8585, Japan
e) Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
f) University of Geneva, Switzerland
g) Institute for Information Transmission Problems, Moscow, Russia
h) Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Tokyo 153-8914, Japan
i) Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan

Received December 06, 2022, in final form October 22, 2023; Published online November 09, 2023

Abstract
We show the relation of the non-stationary difference equation proposed by one of the authors and the quantized discrete Painlevé VI equation. The five-dimensional Seiberg-Witten curve associated with the difference equation has a consistent four-dimensional limit. We also show that the original equation can be factorized as a coupled system for a pair of functions $\bigl(\mathcal{F}^{(1)},\mathcal{F}^{(2)}\bigr)$, which is a consequence of the identification of the Hamiltonian as a translation element in the extended affine Weyl group. We conjecture that the instanton partition function coming from the affine Laumon space provides a solution to the coupled system.

Key words: affine Laumon space; affine Weyl group; deformed Virasoro algebra; non-stationary difference equation; quantum Painlevé equation.

pdf (770 kb)   tex (57 kb)  

References

  1. Alday L.F., Gaiotto D., Gukov S., Tachikawa Y., Verlinde H., Loop and surface operators in ${\mathcal N}=2$ gauge theory and Liouville modular geometry, J. High Energy Phys. 2010 (2010), no. 1, 113, 50 pages, arXiv:0909.0945.
  2. Alday L.F., Gaiotto D., Tachikawa Y., Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010), 167-197, arXiv:0906.3219.
  3. Alday L.F., Tachikawa Y., Affine ${\rm SL}(2)$ conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010), 87-114, arXiv:1005.4469.
  4. Awata H., Fuji H., Kanno H., Manabe M., Yamada Y., Localization with a surface operator, irregular conformal blocks and open topological string, Adv. Theor. Math. Phys. 16 (2012), 725-804, arXiv:1008.0574.
  5. Awata H., Hasegawa K., Kanno H., Ohkawa R., Shakirov S., Shiraishi J., Yamada Y., Non-stationary difference equation and affine Laumon space II: Quantum Knizhnik-Zamolodchikov equation, arXiv:2309.15364.
  6. Awata H., Yamada Y., Five-dimensional AGT conjecture and the deformed Virasoro algebra, J. High Energy Phys. 2010 (2010), no. 1, 125, 11 pages, arXiv:0910.4431.
  7. Bao L., Mitev V., Pomoni E., Taki M., Yagi F., Non-Lagrangian theories from brane junctions, J. High Energy Phys. 2014 (2014), no. 1, 175, 65 pages, arXiv:1310.3841.
  8. Belavin A.A., Polyakov A.M., Zamolodchikov A.B., Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), 333-380.
  9. Bershtein M., Gavrylenko P., Marshakov A., Cluster integrable systems, $q$-Painlevé equations and their quantization, J. High Energy Phys. 2018 (2018), no. 2, 077, 34 pages, arXiv:1711.02063.
  10. Bershtein M.A., Shchechkin A.I., $q$-deformed Painlevé $\tau$ function and $q$-deformed conformal blocks, J. Phys. A 50 (2017), 085202, 22 pages, arXiv:1608.02566.
  11. Bonelli G., Del Monte F., Tanzini A., BPS quivers of five-dimensional SCFTs, topological strings and $q$-Painlevé equations, Ann. Henri Poincaré 22 (2021), 2721-2773, arXiv:2007.11596.
  12. Bonelli G., Grassi A., Tanzini A., Quantum curves and $q$-deformed Painlevé equations, Lett. Math. Phys. 109 (2019), 1961-2001, arXiv:1710.11603.
  13. Brandhuber A., Itzhaki N., Sonnenschein J., Theisen S., Yankielowicz S., On the M-theory approach to (compactified) $5$D field theories, Phys. Lett. B 415 (1997), 127-134, arXiv:hep-th/9709010.
  14. Braverman A., Instanton counting via affine Lie algebras. I. Equivariant $J$-functions of (affine) flag manifolds and Whittaker vectors, in Algebraic Structures and Moduli Spaces, CRM Proc. Lecture Notes, Vol. 38, American Mathematical Society, Providence, RI, 2004, 113-132, arXiv:math.AG/0401409.
  15. Braverman A., Etingof P., Instanton counting via affine Lie algebras. II. From Whittaker vectors to the Seiberg-Witten prepotential, in Studies in Lie Theory: Dedicated to A. Joseph on his Sixtieth Birthday, Progr. Math., Vol. 243, Birkhäuser, Boston, MA, 2006, 61-78, arXiv:math.AG/0409441.
  16. Bullimore M., Kim H.-C., Koroteev P., Defects and quantum Seiberg-Witten geometry, J. High Energy Phys. 2015 (2015), no. 5, 095, 79 pages, arXiv:1412.6081.
  17. Eguchi T., Kanno H., Five-dimensional gauge theories and local mirror symmetry, Nuclear Phys. B 586 (2000), 331-345, arXiv:hep-th/0005008.
  18. Faddeev L., Volkov A.Yu., Abelian current algebra and the Virasoro algebra on the lattice, Phys. Lett. B 315 (1993), 311-318, arXiv:hep-th/9307048.
  19. Fateev V.A., Zamolodchikov A.B., Self-dual solutions of the star-triangle relations in $Z_{N}$-models, Phys. Lett. A 92 (1982), 37-39.
  20. Feigin B., Finkelberg M., Negut A., Rybnikov L., Yangians and cohomology rings of Laumon spaces, Selecta Math. (N.S.) 17 (2011), 573-607, arXiv:0812.4656.
  21. Finkelberg M., Rybnikov R., Quantization of Drinfeld Zastava in type A, arXiv:1009.0676.
  22. Frenkel E., Gukov S., Teschner J., Surface operators and separation of variables, J. High Energy Phys. 2016 (2016), no. 1, 179, 53 pages, arXiv:1506.07508.
  23. Garoufalidis S., Wheeler C., Modular $q$-holonomic modules, arXiv:2203.17029.
  24. Gasper G., Rahman M., Basic hypergeometric series. Second series, Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
  25. Hasegawa K., Quantizing the Bäcklund transformations of Painlevé equations and the quantum discrete Painlevé VI equation, in Exploring New Structures and Natural Constructions in Mathematical Physics, Adv. Stud. Pure Math., Vol. 61, Mathematical Society of Japan, Tokyo, 2011, 275-288, arXiv:math/0703036.
  26. Hasegawa K., Quantizing the discrete Painlevé VI equation: the Lax formalism, Lett. Math. Phys. 103 (2013), 865-879, arXiv:1210.0915.
  27. Hayashi H., Kim H.C., Nishinaka T., Topological strings and 5d $T_N$ partition functions, J. High Energy Phys. 2014 (2014), no. 6, 014, 67 pages, arXiv:1310.3854.
  28. Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145-154, arXiv:chao-dyn/9507010.
  29. Kanno H., Tachikawa Y., Instanton counting with a surface operator and the chain-saw quiver, J. High Energy Phys. 2011 (2011), no. 6, 119, 24 pages, arXiv:1105.0357.
  30. Kim S.-S., Yagi F., 5d $E_n$ Seiberg-Witten curve via toric-like diagram, J. High Energy Phys. 2015 (2015), no. 6, 082, 63 pages, arXiv:1411.7903.
  31. Kirillov A.N., Dilogarithm identities, Progr. Theoret. Phys. Suppl. (1995), 61-142, arXiv:hep-th/9408113.
  32. Kozçaz C., Pasquetti S., Passerini F., Wyllard N., Affine ${\rm sl}(N)$ conformal blocks from $\mathcal N=2$ ${\rm SU}(N)$ gauge theories, J. High Energy Phys. 2011 (2011), no. 1, 045, 40 pages, arXiv:1008.1412.
  33. Kuroki G., Quantum groups and quantization of Weyl group symmetries of Painlevé systems, in Exploring New Structures and Natural Constructions in Mathematical Physics, Adv. Stud. Pure Math., Vol. 61, Mathematical Society of Japan, Tokyo, 2011, 289-325, arXiv:0808.2604.
  34. Langmann E., Noumi M., Shiraishi J., Basic properties of non-stationary Ruijsenaars functions, SIGMA 16 (2020), 105, 26 pages, arXiv:2006.07171.
  35. Marshakov A., Mironov A., Morosov A., On AGT relations with surface operator insertion and a stationary limit of beta-ensembles, J. Geom. Phys. 61 (2011), 1203-1222, arXiv:1011.4491.
  36. Moriyama S., Yamada Y., Quantum representation of affine Weyl groups and associated quantum curves, SIGMA 17 (2021), 076, 24 pages, arXiv:2104.06661.
  37. Neguţ A., Affine Laumon spaces and integrable systems, arXiv:1112.1756.
  38. Nekrasov N., BPS/CFT correspondence V: BPZ and KZ equations from $qq$-characters, arXiv:1711.11582.
  39. Nekrasov N., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003), 831-864, arXiv:hep-th/0206161.
  40. Nekrasov N., BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and $qq$-characters, J. High Energy Phys. 2017 (2017), no. 3, 181, 69 pages, arXiv:1512.05388.
  41. Nekrasov N., Shatashvili S.L., Quantization of integrable systems and four dimensional gauge theories, in XVIth International Congress on Mathematical Physics, World Scientific, Hackensack, NJ, 2010, 265-289, arXiv:0908.4052.
  42. Nekrasov N., Tsymbaliuk A., Surface defects in gauge theory and KZ equation, Lett. Math. Phys. 112 (2022), 28, 53 pages, arXiv:2103.12611.
  43. Noumi M., Shiraishi J., A direct approach to the bispectral problem for the Ruijsenaars-Macdonald $q$-difference operators, arXiv:1206.5364.
  44. Poghossian R., Deformed SW curve and the null vector decoupling equation in Toda field theory, J. High Energy Phys. 2016 (2016), no. 4, 070, 24 pages, arXiv:1601.05096.
  45. Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
  46. Shakirov S., Non-stationary difference equation for $q$-Virasoro conformal blocks, arXiv:2111.07939.
  47. Shiraishi J., Affine screening operators, affine Laumon spaces and conjectures concerning non-stationary Ruijsenaars functions, J. Integrable Syst. 4 (2019), xyz010, 30 pages, arXiv:1903.07495.
  48. Shiraishi J., Kubo H., Awata H., Odake S., A quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996), 33-51, arXiv:q-alg/9507034.
  49. Taki M., Surface operator, bubbling Calabi-Yau and AGT relation, J. High Energy Phys. 2011 (2011), no. 7, 047, 33 pages, arXiv:1007.2524.

Previous article  Next article  Contents of Volume 19 (2023)