Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 083, 28 pages      arXiv:2303.15752      https://doi.org/10.3842/SIGMA.2023.083
Contribution to the Special Issue on Differential Geometry Inspired by Mathematical Physics in honor of Jean-Pierre Bourguignon for his 75th birthday

Rigidity and Non-Rigidity of $\mathbb{H}^n/\mathbb{Z}^{n-2}$ with Scalar Curvature Bounded from Below

Tianze Hao a, Yuhao Hu ab, Peng Liu a and Yuguang Shi a
a) Key Laboratory of Pure and Applied Mathematics,School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China
b) School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China

Received April 08, 2023, in final form October 20, 2023; Published online November 01, 2023

Abstract
We show that the hyperbolic manifold $\mathbb{H}^n/\mathbb{Z}^{n-2}$ is not rigid under all compactly supported deformations that preserve the scalar curvature lower bound $-n(n-1)$, and that it is rigid under deformations that are further constrained by certain topological conditions. In addition, we prove two related splitting results.

Key words: scalar curvature; rigidity; ALH manifolds; $\mu$-bubbles.

pdf (725 kb)   tex (96 kb)  

References

  1. Alaee A., Hung P.K., Khuri M., The positive energy theorem for asymptotically hyperboloidal initial data sets with toroidal infinity and related rigidity results, Comm. Math. Phys. 396 (2022), 451-480, arXiv:2201.04327.
  2. Andersson L., Cai M., Galloway G.J., Rigidity and positivity of mass for asymptotically hyperbolic manifolds, Ann. Henri Poincaré 9 (2008), 1-33, arXiv:math.DG/0703259.
  3. Andersson L., Chruściel P.T., Friedrich H., On the regularity of solutions to the Yamabe equation and the existence of smooth hyperboloidal initial data for Einstein's field equations, Comm. Math. Phys. 149 (1992), 587-612.
  4. Aviles P., McOwen R.C., Conformal deformation to constant negative scalar curvature on noncompact Riemannian manifolds, J. Differential Geom. 27 (1988), 225-239.
  5. Balehowsky T., Woolgar E., The Ricci flow of asymptotically hyperbolic mass and applications, J. Math. Phys. 53 (2012), 072501, 15 pages, arXiv:1110.0765.
  6. Bonini V., Qing J., A positive mass theorem on asymptotically hyperbolic manifolds with corners along a hypersurface, Ann. Henri Poincaré 9 (2008), 347-372, arXiv:0711.0539.
  7. Bredon G.E., Topology and geometry, Grad. Texts in Math., Vol. 139, Springer, New York, 1993.
  8. Brendle S., Marques F.C., Neves A., Deformations of the hemisphere that increase scalar curvature, Invent. Math. 185 (2011), 175-197, arXiv:1004.3088.
  9. Cecchini S., Räde D., Zeidler R., Nonnegative scalar curvature on manifolds with at least two ends, J. Topol. 16 (2023), 855-876, arXiv:2205.12174.
  10. Cecchini S., Zeidler R., The positive mass theorem and distance estimates in the spin setting, arXiv:2108.11972.
  11. Chen J., Liu P., Shi Y., Zhu J., Incompressible hypersurface, positive scalar curvature and positive mass theorem, arXiv:2112.14442.
  12. Chodosh O., Li C., Generalized soap bubbles and the topology of manifolds with positive scalar curvature, arXiv:2008.11888.
  13. Chodosh O., Li C., Liokumovich Y., Classifying sufficiently connected PSC manifolds in 4 and 5 dimensions, Geom. Topol. 27 (2023), 1635-1655, arXiv:2105.07306.
  14. Chow B., Chu S.-C., Glickenstein D., Guenther C., Isenberg J., Ivey T., Knopf D., Lu P., Luo F., Ni L., The Ricci flow: Techniques and applications: Part II: Analytic aspects, Math. Surveys Monogr., Vol. 144, American Mathematical Society, Providence, RI, 2008.
  15. Chow B., Lu P., Ni L., Hamilton's Ricci flow, Grad. Stud. Math., Vol. 77, American Mathematical Society, Providence, RI, 2006.
  16. Chruściel P.T., Galloway G.J., Positive mass theorems for asymptotically hyperbolic Riemannian manifolds with boundary, Classical Quantum Gravity 38 (2021), 237001, 6 pages, arXiv:2107.05603.
  17. Chruściel P.T., Galloway G.J., Nguyen L., Paetz T.-T., On the mass aspect function and positive energy theorems for asymptotically hyperbolic manifolds, Classical Quantum Gravity 35 (2018), 115015, 38 pages, arXiv:1801.03442.
  18. Croke C.B., Kleiner B., A warped product splitting theorem, Duke Math. J. 67 (1992), 571-574.
  19. Gromov M., Positive curvature, macroscopic dimension, spectral gaps and higher signatures, in Functional Analysis on the Eve of the 21st Century, Vol. II (New Brunswick, NJ, 1993), Progr. Math., Vol. 132, Birkhäuser, Boston, MA, 1996, 1-213.
  20. Gromov M., Metric inequalities with scalar curvature, Geom. Funct. Anal. 28 (2018), 645-726, arXiv:1710.04655.
  21. Gromov M., Scalar curvature of manifolds with boundaries: natural questions and artificial constructions, arXiv:1811.04311.
  22. Gromov M., Four lectures on scalar curvature, in Perspectives in Scalar Curvature. Vol. 1, Editors M. Gromov, H.B. Lawson Jr., World Scientific, Hackensack, NJ, 2023, 1-514, arXiv:1908.10612.
  23. Gromov M., Lawson Jr. H.B., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 1983 (1983), 83—196.
  24. Hatcher A., Algebraic topology, Cambridge University Press, Cambridge, 2002.
  25. Hu Y., Liu P., Shi Y., Rigidity of 3D spherical caps via $\mu$-bubbles, Pacific J. Math. 323 (2023), 89-114, arXiv:2205.08428.
  26. Huang L.-H., Jang H.C., Scalar curvature deformation and mass rigidity for ALH manifolds with boundary, Trans. Amer. Math. Soc. 375 (2022), 8151-8191, arXiv:2108.12887.
  27. Kazdan J.L., Warner F.W., Prescribing curvatures, in Differential Geometry (Proc. Sympos. Pure Math., Vol. XXVII, Part 2, Stanford Univ., Stanford, Calif., 1973), Proc. Sympos. Pure Math., Vol. 27, Part 2, American Mathematical Society, Providence, RI, 1975, 309-319.
  28. Lee D.A., Neves A., The Penrose inequality for asymptotically locally hyperbolic spaces with nonpositive mass, Comm. Math. Phys. 339 (2015), 327-352, arXiv:1310.3002.
  29. Lesourd M., Unger R., Yau S.-T., The positive mass theorem with arbitrary ends, arXiv:2103.02744.
  30. Min-Oo M., Scalar curvature rigidity of asymptotically hyperbolic spin manifolds, Math. Ann. 285 (1989), 527-539.
  31. Rotman J.J., An introduction to the theory of groups, 4th ed., Grad. Texts in Math., Vol. 148, Springer, New York, 1995.
  32. Schoen R., Yau S.-T., Lectures on differential geometry, Conf. Proc. Lecture Notes Geom. Topology, Vol. 1, International Press, Cambridge, MA, 1994.
  33. Shi W.-X., Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989), 223-301.
  34. Shi Y., Wang W., Wei G., Total mean curvature of the boundary and nonnegative scalar curvature fill-ins, J. Reine Angew. Math. 784 (2022), 215-250, arXiv:2007.06756.
  35. Wang J., Contractible 3-manifold and positive scalar curvature, Ph.D. Thesis, Université Grenoble Alpes, 2019, available at https://theses.hal.science/tel-02953229.
  36. Yau S.-T., Geometry of three manifolds and existence of black hole due to boundary effect, Adv. Theor. Math. Phys. 5 (2001), 755-767, arXiv:math/0109053.
  37. Zhou X., Zhu J.J., Existence of hypersurfaces with prescribed mean curvature I -- generic min-max, Camb. J. Math. 8 (2020), 311-362, arXiv:1808.03527.
  38. Zhu J., Rigidity results for complete manifolds with nonnegative scalar curvature, arXiv:2008.07028.
  39. Zhu J., Width estimate and doubly warped product, Trans. Amer. Math. Soc. 374 (2021), 1497-1511, arXiv:2003.01315.
  40. Zhu J., Positive mass theorem with arbitrary ends and its application, Int. Math. Res. Not. 2023 (2023), 9880-9900, arXiv:2204.05491.

Previous article  Next article  Contents of Volume 19 (2023)