Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 081, 42 pages      arXiv:2210.06415      https://doi.org/10.3842/SIGMA.2023.081

Packing Densities of Delzant and Semitoric Polygons

Yu Du a, Gabriel Kosmacher a, Yichen Liu a, Jeff Massman a, Joseph Palmer ab, Timothy Thieme a, Jerry Wu a and Zheyu Zhang a
a)  Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
b)  Department of Mathematics, University of Antwerp,Antwerp, Belgium

Received November 22, 2022, in final form October 20, 2023; Published online October 29, 2023

Abstract
Exploiting the relationship between 4-dimensional toric and semitoric integrable systems with Delzant and semitoric polygons, respectively, we develop techniques to compute certain equivariant packing densities and equivariant capacities of these systems by working exclusively with the polygons. This expands on results of Pelayo and Pelayo-Schmidt. We compute the densities of several important examples and we also use our techniques to solve the equivariant semitoric perfect packing problem, i.e., we list all semitoric polygons for which the associated semitoric system admits an equivariant packing which fills all but a set of measure zero of the manifold. This paper also serves as a concise and accessible introduction to Delzant and semitoric polygons in dimension four.

Key words: equivariant packing; equivariant symplectic capacities; semitoric integrable systems; semitoric polygons; integrable systems.

pdf (675 kb)   tex (55 kb)  

References

  1. Alonso J., Dullin H.R., Hohloch S., Taylor series and twisting-index invariants of coupled spin-oscillators, J. Geom. Phys. 140 (2019), 131-151, arXiv:1712.06402.
  2. Alonso J., Dullin H.R., Hohloch S., Symplectic classification of coupled angular momenta, Nonlinearity 33 (2020), 417-468, arXiv:1808.05849.
  3. Alonso J., Hohloch S., Palmer J., The twisting index in semitoric systems, arXiv:2309.16614.
  4. Atiyah M.F., Convexity and commuting Hamiltonians, Bull. Lond. Math. Soc. 14 (1982), 1-15.
  5. Bolsinov A.V., Fomenko A.T., Integrable Hamiltonian systems. Geometry, topology, classification, Chapman & Hall/CRC, Boca Raton, FL, 2004.
  6. Casals R., Vianna R., Full ellipsoid embeddings and toric mutations, Selecta Math. (N.S.) 28 (2022), 61, 62 pages, arXiv:2004.13232.
  7. Cieliebak K., Hofer H., Latschev J., Schlenk F., Quantitative symplectic geometry, in Dynamics, Ergodic Theory, and Geometry, Math. Sci. Res. Inst. Publ., Vol. 54, Cambridge University Press, Cambridge, 2007, 1-44, arXiv:math.SG/0506191.
  8. Cristofaro-Gardiner D., Holm T., Mandini A., Pires A.R., On infinite staircases in toric symplectic four-manifolds, arXiv:2004.13062.
  9. De Meulenaere A., Hohloch S., A family of semitoric systems with four focus-focus singularities and two double pinched tori, J. Nonlinear Sci. 31 (2021), 66, 56 pages, arXiv:1911.11883.
  10. Delzant T., Hamiltoniens périodiques et images convexes de l'application moment, Bull. Soc. Math. France 116 (1988), 315-339.
  11. Du Y., Kosmacher G., Liu Y., Massman J., Palmer J., Thieme T., Wu J., Zhang Z., Semitoric packing capacity, https://github.com/CoulsonZhang/Semi-toric_Packing_Capacity.
  12. Duistermaat J.J., Heckman G.J., On the variation in the cohomology of the symplectic form of the reduced phase space, Invent. Math. 69 (1982), 259-268.
  13. Ekeland I., Hofer H., Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), 355-378.
  14. Farley C., Holm T., Magill N., Schroder J., Weiler M., Wang Z., Zabelina E., Four-periodic infinite staircases for four-dimensional polydisks, arXiv:2210.15069.
  15. Figalli A., Palmer J., Pelayo Á., Symplectic $G$-capacities and integrable systems, Ann. Sc. Norm. Super. Pisa Cl. Sci. 18 (2018), 65-103, arXiv:1511.04499.
  16. Gromov M., Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347.
  17. Guillemin V., Sternberg S., Convexity properties of the moment mapping, Invent. Math. 67 (1982), 491-513.
  18. Hofer H., Symplectic capacities, in Geometry of Low-Dimensional Manifolds, (2) (Durham, 1989), London Math. Soc. Lecture Note Ser., Vol. 151, Cambridge University Press, Cambridge, 1990, 15-34.
  19. Hohloch S., Palmer J., A family of compact semitoric systems with two focus-focus singularities, J. Geom. Mech. 10 (2018), 331-357, arXiv:1710.05746.
  20. Hohloch S., Palmer J., Extending compact Hamiltonian $S^1$-spaces to integrable systems with mild degeneracies in dimension four, arXiv:2105.00523.
  21. Hohloch S., Sabatini S., Sepe D., From compact semi-toric systems to Hamiltonian $S^1$-spaces, Discrete Contin. Dyn. Syst. 35 (2015), 247-281, arXiv:1305.7040.
  22. Hwang T., Suh D.Y., Symplectic capacities from Hamiltonian circle actions, J. Symplectic Geom. 15 (2017), 785-802, arXiv:1305.2989.
  23. Kane D.M., Palmer J., Pelayo Á., Classifying toric and semitoric fans by lifting equations from ${\rm SL}_2(\mathbb Z)$, SIGMA 14 (2018), 016, 43 pages, arXiv:1502.07698.
  24. Kane D.M., Palmer J., Pelayo Á., Minimal models of compact symplectic semitoric manifolds, J. Geom. Phys. 125 (2018), 49-74, arXiv:1610.05423.
  25. Karshon Y., Lerman E., Non-compact symplectic toric manifolds, SIGMA 11 (2015), 055, 37 pages, arXiv:0907.2891.
  26. Le Floch Y., Palmer J., Semitoric families, Mem. Amer. Math. Soc., to appear, arXiv:1810.06915.
  27. Le Floch Y., Palmer J., Families of four-dimensional integrable systems with $S^1$-symmetries, arXiv:2307.10670.
  28. Le Floch Y., Pelayo Á., Symplectic geometry and spectral properties of classical and quantum coupled angular momenta, J. Nonlinear Sci. 29 (2019), 655-708, arXiv:1607.05419.
  29. Le Floch Y., Pelayo Á., Vũ Ngdoc S., Inverse spectral theory for semiclassical Jaynes-Cummings systems, Math. Ann. 364 (2016), 1393-1413, arXiv:1407.5159.
  30. Le Floch Y., Vũ Ngdoc S., The inverse spectral problem for quantum semitoric systems, arXiv:2104.06704.
  31. Magill N., Unobstructed embeddings in Hirzebruch surfaces, arXiv:2204.12460.
  32. Magill N., McDuff D., Weiler M., Staircase patterns in Hirzebruch surfaces, arXiv:2203.06453.
  33. McDuff D., Schlenk F., The embedding capacity of 4-dimensional symplectic ellipsoids, Ann. of Math. 175 (2012), 1191-1282, arXiv:0912.0532.
  34. Palmer J., Moduli spaces of semitoric systems, J. Geom. Phys. 115 (2017), 191-217, arXiv:1502.07296.
  35. Palmer J., Pelayo Á., Tang X., Semitoric systems of non-simple type, arXiv:1909.03501.
  36. Pelayo Á., Toric symplectic ball packing, Topology Appl. 153 (2006), 3633-3644, arXiv:0704.1034.
  37. Pelayo Á., Topology of spaces of equivariant symplectic embeddings, Proc. Amer. Math. Soc. 135 (2007), 277-288, arXiv:0704.1033.
  38. Pelayo Á., Ratiu T.S., Vũ Ngdoc S., The affine invariant of proper semitoric integrable systems, Nonlinearity 30 (2017), 3993-4028.
  39. Pelayo Á., Schmidt B., Maximal ball packings of symplectic-toric manifolds, Int. Math. Res. Not. 2008 (2008), rnm139, 24 pages.
  40. Pelayo Á., Vũ Ngdoc S., Semitoric integrable systems on symplectic 4-manifolds, Invent. Math. 177 (2009), 571-597, arXiv:0806.1946.
  41. Pelayo Á., Vũ Ngdoc S., Constructing integrable systems of semitoric type, Acta Math. 206 (2011), 93-125, arXiv:0903.3376.
  42. Pelayo Á., Vũ Ngdoc S., Hamiltonian dynamics and spectral theory for spin-oscillators, Comm. Math. Phys. 309 (2012), 123-154, arXiv:1005.0439.
  43. Sadovskií D.A., Zhilinskií B.I., Monodromy, diabolic points, and angular momentum coupling, Phys. Lett. A 256 (1999), 235-244.
  44. Symington M., Four dimensions from two in symplectic topology, in Topology and Geometry of Manifolds, Proc. Sympos. Pure Math., Vol. 71, American Mathematical Society, Providence, RI, 2003, 153-208, arXiv:math.SG/0210033.
  45. Vũ Ngdoc S., Moment polytopes for symplectic manifolds with monodromy, Adv. Math. 208 (2007), 909-934, arXiv:math.SG/0504165.

Previous article  Next article  Contents of Volume 19 (2023)