Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 080, 20 pages      arXiv:1609.00495      https://doi.org/10.3842/SIGMA.2023.080

A Constructive Proof for the Umemura Polynomials of the Third Painlevé Equation

Peter A. Clarkson a, Chun-Kong Law b and Chia-Hua Lin b
a) School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK
b) Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan 804, Taiwan

Received June 29, 2023, in final form October 17, 2023; Published online October 25, 2023

Abstract
We are concerned with the Umemura polynomials associated with rational solutions of the third Painlevé equation. We extend Taneda's method, which was developed for the Yablonskii-Vorob'ev polynomials associated with the second Painlevé equation, to give an algebraic proof that the rational functions generated by the nonlinear recurrence relation which determines the Umemura polynomials are indeed polynomials. Our proof is constructive and gives information about the roots of the Umemura polynomials.

Key words: Umemura polynomials; third Painlevé equation; recurrence relation.

pdf (1648 kb)   tex (313 kb)  

References

  1. Amdeberhan T., Discriminants of Umemura polynomials associated to Painlevé III, Phys. Lett. A 354 (2006), 410-413.
  2. Barashenkov I.V., Pelinovsky D.E., Exact vortex solutions of the complex sine-Gordon theory on the plane, Phys. Lett. B 436 (1998), 117-124, arXiv:hep-th/9807045.
  3. Bothner T., Miller P.D., Rational solutions of the Painlevé-III equation: large parameter asymptotics, Constr. Approx. 51 (2020), 123-224, arXiv:1808.01421.
  4. Bothner T., Miller P.D., Sheng Y., Rational solutions of the Painlevé-III equation, Stud. Appl. Math. 141 (2018), 626-679, arXiv:1801.04360.
  5. Bracken P., Goldstein P.P., Grundland A.M., On vortex solutions and links between the Weierstrass system and the complex sine-Gordon equations, J. Nonlinear Math. Phys. 10 (2003), 464-486.
  6. Bracken P., Grundland A.M., On multivortex solutions of the Weierstrass representation, Phys. Atomic Nuclei 2002, 1028-1032, arXiv:nlin.SI/0111058.
  7. Buckingham R.J., Miller P.D., On the algebraic solutions of the Painlevé-III $(\rm D_7)$ equation, Phys. D 441 7(2022), 133493, 22 pages, arXiv:2202.04217.
  8. Burchnall J.L., The Bessel polynomials, Canad. J. Math. 3 (1951), 62-68.
  9. Carlitz L., A note on the Bessel polynomials, Duke Math. J. 24 (1957), 151-162.
  10. Chen H., Chen M., Blower G., Chen Y., Single-user MIMO system, Painlevé transcendents, and double scaling, J. Math. Phys. 58 (2017), 123502, 24 pages, arXiv:1711.09372.
  11. Clarkson P.A., The third Painlevé equation and associated special polynomials, J. Phys. A 36 (2003), 9507-9532.
  12. Clarkson P.A., Special polynomials associated with rational solutions of the fifth Painlevé equation, J. Comput. Appl. Math. 178 (2005), 111-129.
  13. Clarkson P.A., Painlevé equations -- nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 331-411.
  14. Clarkson P.A., Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations, Comput. Methods Funct. Theory 6 (2006), 329-401.
  15. Clarkson P.A., Classical solutions of the degenerate fifth Painlevé equation, J. Phys. A 56 (2023), 134002, 23 pages, arXiv:2301.01727.
  16. Common A.K., Hone A.N.W., Rational solutions of the discrete time Toda lattice and the alternate discrete Painlevé II equation, J. Phys. A 41 (2008), 485203, 21 pages, arXiv:0807.3731.
  17. Fokas A.S., Ablowitz M.J., On a unified approach to transformations and elementary solutions of Painlevé equations, J. Math. Phys. 23 (1982), 2033-2042.
  18. Fukutani S., Okamoto K., Umemura H., Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations, Nagoya Math. J. 159 (2000), 179-200.
  19. Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Stud. Math., Vol. 28, Walter de Gruyter, Berlin, 2002.
  20. Grosswald E., Bessel polynomials, Lect. Notes Math., Vol. 698, Springer, Berlin, 1978.
  21. Ince E.L., Ordinary differential equations, Dover Publications, New York, 1956.
  22. Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects Math., Vol. 16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
  23. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  24. Kajiwara K., On a $q$-difference Painlevé III equation. II. Rational solutions, J. Nonlinear Math. Phys. 10 (2003), 282-303, arXiv:nlin.SI/0205063.
  25. Kajiwara K., Masuda T., On the Umemura polynomials for the Painlevé III equation, Phys. Lett. A 260 (1999), 462-467, arXiv:solv-int/9903015.
  26. Kaneko M., Ochiai H., On coefficients of Yablonskii-Vorob'ev polynomials, J. Math. Soc. Japan 55 (2003), 985-993, arXiv:1208.2337.
  27. Krall H.L., Frink O., A new class of orthogonal polynomials: The Bessel polynomials, Trans. Amer. Math. Soc. 65 (1949), 100-115.
  28. Mansfield E.L., Webster H.N., On one-parameter families of Painlevé III, Stud. Appl. Math. 101 (1998), 321-341.
  29. Masuda T., On a class of algebraic solutions to the Painlevé VI equation, its determinant formula and coalescence cascade, Funkcial. Ekvac. 46 (2003), 121-171, arXiv:nlin.SI/0202044.
  30. Milne A.E., Clarkson P.A., Bassom A.P., Bäcklund transformations and solution hierarchies for the third Painlevé equation, Stud. Appl. Math. 98 (1997), 139-194.
  31. Murata Y., Classical solutions of the third Painlevé equation, Nagoya Math. J. 139 (1995), 37-65.
  32. Noumi M., Notes on Umemura polynomials, Ann. Fac. Sci. Toulouse Math. (6) 29 (2020), 1091-1118.
  33. Noumi M., Okada S., Okamoto K., Umemura H., Special polynomials associated with the Painlevé equations. II, in Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), World Scientific, River Edge, NJ, 1998, 349-372.
  34. Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$, J. Math. Sci. Univ. Tokyo 13 (2006), 145-204.
  35. Okamoto K., Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{{\rm II}}$ and $P_{{\rm IV}}$, Math. Ann. 275 (1986), 221-255.
  36. Okamoto K., Studies on the Painlevé equations. IV. Third Painlevé equation $P_{{\rm III}}$, Funkcial. Ekvac. 30 (1987), 305-332.
  37. Olver F.W.J., Daalhuis O.A.B., Lozier D.W., Schneider B.I., Boisvert R.F., Clark C.W., Miller B.R., Saunders B.V., Cohl H.S., McClain M.A., NIST digital library of mathematical functions, Release 1.1.11, September 15, 2023, available at http://dlmf.nist.gov/.
  38. Olver N., Barashenkov I.V., The complex sine-Gordon-2 equation: a new algorithm for obtaining multivortex solution on the plane, Theoret. and Math. Phys. 144 (2005), 1223-1226, arXiv:nlin.SI/0502048.
  39. O'Neil K.A., Point vortex equilibria related to Bessel polynomials, Regul. Chaotic Dyn. 21 (2016), 249-253.
  40. Taneda M., Remarks on the Yablonskii-Vorob'ev polynomials, Nagoya Math. J. 159 (2000), 87-111.
  41. Umemura H., Painlevé equations and classical functions, Sugaku Expositions 11 (1998), 77-100.
  42. Umemura H., Painlevé equations in the past 100 years, Trans. Amer. Math. Soc. 204 (2001), 81-110.
  43. Umemura H., Special polynomials associated with the Painlevé equations I, Ann. Fac. Sci. Toulouse Math. (6) 29 (2020), 1063-1089.
  44. Umemura H., Watanabe H., Solutions of the third Painlevé equation. I, Nagoya Math. J. 151 (1998), 1-24.
  45. Vorob'ev A.P., On the rational solutions of the second Painlevé equation, Differ. Equations 1 (1965), 58-59.
  46. Yablonskii A.I., On rational solutions of the second Painlevé equation, Vesti AN BSSR, Ser. Fiz.-Tech. Nauk (1959), no. 3, 30-35.

Previous article  Next article  Contents of Volume 19 (2023)