Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 068, 26 pages      arXiv:2107.07204      https://doi.org/10.3842/SIGMA.2023.068

Moduli Spaces for the Fifth Painlevé Equation

Marius van der Put and Jaap Top
Bernoulli Institute, Nijenborgh 9, 9747 AG Groningen, The Netherlands

Received July 15, 2021, in final form September 07, 2023; Published online September 26, 2023

Abstract
Isomonodromy for the fifth Painlevé equation ${\rm P}_5$ is studied in detail in the context of certain moduli spaces for connections, monodromy, the Riemann-Hilbert morphism, and Okamoto-Painlevé spaces. This involves explicit formulas for Stokes matrices and parabolic structures. The rank 4 Lax pair for ${\rm P}_5$, introduced by Noumi-Yamada et al., is shown to be induced by a natural fine moduli space of connections of rank 4. As a by-product one obtains a polynomial Hamiltonian for ${\rm P}_5$, equivalent to the one of Okamoto.

Key words: moduli space for linear connections; irregular singularities; Stokes matrices; monodromy spaces; isomonodromic deformations; Painlevé equations.

pdf (549 kb)   tex (37 kb)  

References

  1. Acosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fifth Painlevé equation, SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674.
  2. Boalch P., Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137-205, arXiv:2002.00052.
  3. Boalch P., Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J. 139 (2007), 369-405, arXiv:math.DG/0203161.
  4. Boalch P., Wild character varieties, meromorphic Hitchin systems and Dynkin diagrams, in Geometry and Physics. Vol. II, Oxford University Press, Oxford, 2018, 433-454, arXiv:1703.10376.
  5. Chekhov L.O., Mazzocco M., Rubtsov V.N., Painlevé monodromy manifolds, decorated character varieties, and cluster algebras, Int. Math. Res. Not. 2017 (2017), 7639-7691, arXiv:1511.03851.
  6. Clarkson P.A., Painlevé equations - nonlinear special functions, J. Comput. Appl. Math. 153 (2003), 127-140.
  7. Clarkson P.A., Special polynomials associated with rational solutions of the fifth Painlevé equation, J. Comput. Appl. Math. 178 (2005), 111-129.
  8. Clarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Springer, Berlin, 2006, 331-411.
  9. Gromak V.I., On the transcendence of the Painlevé equations, Differ. Equ. 32 (1996), 156-162.
  10. Hartshorne R., Algebraic geometry, Grad. Texts Math., Vol. 52, Springer, New York, 1977.
  11. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407-448.
  12. Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau$-function, Phys. D 2 (1981), 306-352.
  13. Miwa T., Painlevé property of monodromy preserving deformation equations and the analyticity of $\tau$ functions, Publ. Res. Inst. Math. Sci. 17 (1981), 703-721.
  14. Noumi M., Yamada Y., Higher order Painlevé equations of type $A^{(1)}_l$, Funkcial. Ekvac. 41 (1998), 483-503, arXiv:math.QA/9808003.
  15. Ohyama Y., Okumura S., A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations, J. Phys. A 39 (2006), 12129-12151.
  16. Ohyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the first to the fifth, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, American Mathematical Society, Providence, RI, 2013, 163-178, arXiv:math.CA/0512243.
  17. Okamoto K., Polynomial Hamiltonians associated with Painlevé equations. I, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), 264-268.
  18. Okamoto K., Studies on the Painlevé equations. I. Sixth Painlevé equation $P_{{\rm VI}}$, Ann. Mat. Pura Appl. (4) 146 (1987), 337-381.
  19. Okamoto K., Studies on the Painlevé equations. II. Fifth Painlevé equation $P_{\rm V}$, Japan. J. Math. (N.S.) 13 (1987), 47-76.
  20. Paul E., Ramis J.-P., Dynamics on wild character varieties, SIGMA 11 (2015), 068, 21 pages, arXiv:1508.03122.
  21. Paul E., Ramis J.-P., Dynamics of the fifth Painlevé foliation, arXiv:2301.08597.
  22. van der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611-2667, arXiv:0902.1702.
  23. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren Math. Wiss., Vol. 328, Springer, Berlin, 2003.
  24. van der Put M., Top J., A Riemann-Hilbert approach to Painlevé IV, J. Nonlinear Math. Phys. 20 (2013), 165-177, arXiv:1207.4335.
  25. van der Put M., Top J., Geometric aspects of the Painlevé equations ${\rm PIII}(\rm D_6)$ and ${\rm PIII}(\rm D_7)$, SIGMA 10 (2014), 050, 24 pages, arXiv:1207.4023.
  26. Sen A., Hone A.N.W., Clarkson P.A., On the Lax pairs of the symmetric Painlevé equations, Stud. Appl. Math. 117 (2006), 299-319.

Previous article  Next article  Contents of Volume 19 (2023)