Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 19 (2023), 037, 40 pages      arXiv:2209.02227      https://doi.org/10.3842/SIGMA.2023.037

On $q$-Middle Convolution and $q$-Hypergeometric Equations

Yumi Arai and Kouichi Takemura
Department of Mathematics, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan

Received October 14, 2022, in final form May 19, 2023; Published online June 05, 2023

Abstract
The $q$-middle convolution was introduced by Sakai and Yamaguchi. In this paper, we reformulate $q$-integral transformations associated with the $q$-middle convolution. In particular, we discuss convergence of the $q$-integral transformations. As an application, we obtain $q$-integral representations of solutions to the variants of the $q$-hypergeometric equation by applying the $q$-middle convolution.

Key words: hypergeometric function; $q$-hypergeometric equation; middle convolution; $q$-integral.

pdf (567 kb)   tex (34 kb)  

References

  1. Aomoto K., On the 3 fundamental problems concerning $q$-basic hypergeometric functions ($q$-difference equations, asymptotic behaviours and connection problem), in Proceedinds of Fifth Oka Symposium (March 18-19, 2006, Nara), Oka Mathematical Institute, Japan, 2006, 16 pages.
  2. Arai Y., $q$-deformation of middle convolution and its application to $q$-difference equations, Master's Thesis, Ochanomizu University, 2023.
  3. Dettweiler M., Reiter S., An algorithm of Katz and its application to the inverse Galois problem, J. Symbolic Comput. 30 (2000), 761-798.
  4. Dettweiler M., Reiter S., Middle convolution of Fuchsian systems and the construction of rigid differential systems, J. Algebra 318 (2007), 1-24.
  5. Fujii T., Special solutions of $q$-Heun equation by $q$-hypergeometric integral, Master's Thesis, Kobe University, 2022.
  6. Fujii T., Nobukawa T., Hypergeometric solutions for variants of the $q$-hypergeometric equation, arXiv:2207.12777.
  7. Gasper G., Rahman M., Basic hypergeometric series, 2nd ed., Encyclopedia Math. Appl., Vol. 96, Cambridge University Press, Cambridge, 2004.
  8. Haraoka Y., Linear differential equations in the complex domain, Lecture Notes in Math., Vol. 2271, Springer, Cham, 2020.
  9. Hatano N., Matsunawa R., Sato T., Takemura K., Variants of $q$-hypergeometric equation, Funkcial. Ekvac. 65 (2022), 159-190, arXiv:1910.12560.
  10. Katz N.M., Rigid local systems, Ann. of Math. Stud., Vol. 139, Princeton University Press, Princeton, NJ, 1996.
  11. Matsunawa R., Sato T., Takemura K., Variants of confluent $q$-hypergeometric equations, in Geometric and Harmonic Analysis on Homogeneous Spaces and Applications, Springer Proc. Math. Stat., Vol. 366, Springer, Cham, 2021, 161-180, arXiv:2005.13223.
  12. Mimachi K., Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan-Pochhammer type, Nagoya Math. J. 116 (1989), 149-161.
  13. Sakai H., Yamaguchi M., Spectral types of linear $q$-difference equations and $q$-analog of middle convolution, Int. Math. Res. Not. 2017 (2017), 1975-2013, arXiv:1410.3674.
  14. Sasaki S., Takagi S., Takemura K., $q$-middle convolution and $q$-Painlevé equation, SIGMA 18 (2022), 056, 21 pages, arXiv:2201.03960.
  15. Whittaker E., Watson G., A course of modern analysis, 4th ed., Cambridge Math. Lib., Cambridge University Press, New York, 1962.

Previous article  Next article  Contents of Volume 19 (2023)