Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 18 (2022), 090, 20 pages      arXiv:2203.07072      https://doi.org/10.3842/SIGMA.2022.090

A Representation-Theoretic Approach to $qq$-Characters

Henry Liu
Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX26GG, UK

Received May 15, 2022, in final form November 17, 2022; Published online November 24, 2022

Abstract
We raise the question of whether (a slightly generalized notion of) $qq$-characters can be constructed purely representation-theoretically. In the main example of the quantum toroidal $\mathfrak{gl}_1$ algebra, geometric engineering of adjoint matter produces an explicit vertex operator $\mathsf{RR}$ which computes certain $qq$-characters, namely Hirzebruch $\chi_y$-genera, completely analogously to how the R-matrix $\mathsf{R}$ computes $q$-characters. We give a geometric proof of the independence of preferred direction for the refined vertex in this and more general non-toric settings.

Key words: $qq$-characters; geometric engineering; vertex operators; R-matrices; Pandharipande-Thomas theory.

pdf (623 kb)   tex (560 kb)  

References

  1. Alexeev V., Complete moduli in the presence of semiabelian group action, Ann. of Math. 155 (2002), 611-708, arXiv:math.AG/9905103.
  2. Arbesfeld N., K-theoretic Donaldson-Thomas theory and the Hilbert scheme of points on a surface, Algebr. Geom. 8 (2021), 587-625, arXiv:1905.04567.
  3. Awata H., Feigin B., Shiraishi J., Quantum algebraic approach to refined topological vertex, J. High Energy Phys. 2012 (2012), no. 3, 041, 35 pages, arXiv:1112.6074.
  4. Awata H., Kanno H., Refined BPS state counting from Nekrasov's formula and Macdonald functions, Internat. J. Modern Phys. A 24 (2009), 2253-2306, arXiv:0805.0191.
  5. Awata H., Kanno H., Changing the preferred direction of the refined topological vertex, J. Geom. Phys. 64 (2013), 91-110, arXiv:0903.5383.
  6. Awata H., Kanno H., Mironov A., Morozov A., Morozov A., Ohkubo Y., Zenkevich Ye., Toric Calabi-Yau threefolds as quantum integrable systems. $\mathcal R$-matrix and $\mathcal{RTT}$ relations, J. High Energy Phys. 2016 (2016), no. 10, 047, 49 pages, arXiv:1608.05351.
  7. Bastian B., Hohenegger S., Iqbal A., Rey S.J., Triality in little string theories, Phys. Rev. D 97 (2018), 046004, 28 pages, arXiv:1711.07921.
  8. Calabrese J., Donaldson-Thomas invariants and flops, J. Reine Angew. Math. 716 (2016), 103-145, arXiv:1111.1670.
  9. Carlsson E., Nekrasov N., Okounkov A., Five dimensional gauge theories and vertex operators, Mosc. Math. J. 14 (2014), 39-61, arXiv:1308.2465.
  10. Feigin B., Jimbo M., Mukhin E., Combinatorics of vertex operators and deformed $W$-algebra of type ${\rm D}(2, 1; \alpha)$, Adv. Math. 403 (2022), 108331, 54 pages, arXiv:2103.15247.
  11. Frenkel E., Mukhin E., Combinatorics of $q$-characters of finite-dimensional representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), 23-57, arXiv:math.QA/9911112.
  12. Frenkel E., Reshetikhin N., The $q$-characters of representations of quantum affine algebras and deformations of $\mathcal W$-algebras, in Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI, 1999, 163-205, arXiv:math.QA/9810055.
  13. Fukuda M., Ohkubo Y., Shiraishi J., Generalized Macdonald functions on Fock tensor spaces and duality formula for changing preferred direction, Comm. Math. Phys. 380 (2020), 1-70, arXiv:1903.05905.
  14. Haiman M., Macdonald polynomials and geometry, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-97), Math. Sci. Res. Inst. Publ., Vol. 38, Cambridge University Press, Cambridge, 1999, 207-254.
  15. Iqbal A., Kashani-Poor A.K., The vertex on a strip, Adv. Theor. Math. Phys. 10 (2006), 317-343, arXiv:hep-th/0410174.
  16. Iqbal A., Kozçaz C., Shabbir K., Refined topological vertex, cylindric partitions and $\rm U(1)$ adjoint theory, Nuclear Phys. B 838 (2010), 422-457, arXiv:0803.2260.
  17. Iqbal A., Kozçaz C., Vafa C., The refined topological vertex, J. High Energy Phys. 2009 (2009), no. 10, 069, 58 pages, arXiv:hep-th/0701156.
  18. Kac V.G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
  19. Kanazawa A., Lau S.C., Local Calabi-Yau manifolds of type $\tilde{A}$ via SYZ mirror symmetry, J. Geom. Phys. 139 (2019), 103-138, arXiv:1605.00342.
  20. Katz S., Klemm A., Vafa C., Geometric engineering of quantum field theories, Nuclear Phys. B 497 (1997), 173-195, arXiv:hep-th/9609239.
  21. Kononov Ya., Okounkov A., Osinenko A., The 2-leg vertex in K-theoretic DT theory, Comm. Math. Phys. 382 (2021), 1579-1599, arXiv:1905.01523.
  22. Liu H., Asymptotic representations of shifted quantum affine algebras from critical K-Theory, Ph.D. Thesis, Columbia University, 2021, available at https://academiccommons.columbia.edu/doi/10.7916/d8-ynxy-5j49.
  23. Maulik D., Okounkov A., Quantum groups and quantum cohomology, Astérisque 408 (2019), x+209 pages, arXiv:1211.1287.
  24. Morozov A., Zenkevich Y., Decomposing Nekrasov decomposition, J. High Energy Phys. 2016 (2016), no. 2, 098, 45 pages, arXiv:1510.01896.
  25. Nakajima H., Quiver varieties and finite-dimensional representations of quantum affine algebras, J. Amer. Math. Soc. 14 (2001), 145-238, arXiv:math.QA/9912158.
  26. Neguţ A., Quantum algebras and cyclic quiver varieties, Ph.D. Thesis, Columbia University, 2015, available at https://academiccommons.columbia.edu/doi/10.7916/D8J38RGF.
  27. Neguţ A., AGT relations for sheaves on surfaces, arXiv:1711.00390.
  28. Neguţ A., The $q$-AGT-W relations via shuffle algebras, Comm. Math. Phys. 358 (2018), 101-170, arXiv:1608.08613.
  29. Neguţ A., The universal sheaf as an operator, Math. Res. Lett. 28 (2021), 1793-1840, arXiv:2007.10496.
  30. Nekrasov N., BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and $qq$-characters, J. High Energy Phys. 2016 (2016), no. 3, 181, 70 pages, arXiv:1512.05388.
  31. Nekrasov N., BPS/CFT correspondence II: instantons at crossroads, moduli and compactness theorem, Adv. Theor. Math. Phys. 21 (2017), 503-583, arXiv:1608.07272.
  32. Nekrasov N., Okounkov A., Membranes and sheaves, Algebr. Geom. 3 (2016), 320-369, arXiv:1404.2323.
  33. Oh J., Thomas R., Counting sheaves on Calabi-Yau 4-folds, I, arXiv:2009.05542.
  34. Okounkov A., Lectures on K-theoretic computations in enumerative geometry, in Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., Vol. 24, Amer. Math. Soc., Providence, RI, 2017, 251-380, arXiv:1512.07363.
  35. Okounkov A., Smirnov A., Quantum difference equation for Nakajima varieties,Invent. Math. 229 (2022), 1203-1299, arXiv:1602.09007.
  36. Pandharipande R., Thomas R.P., The 3-fold vertex via stable pairs, Geom. Topol. 13 (2009), 1835-1876, arXiv:0709.3823.
  37. Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
  38. Schiffmann O., Drinfeld realization of the elliptic Hall algebra, J. Algebraic Combin. 35 (2012), 237-262, arXiv:1004.2575.
  39. Smirnov A., Polynomials associated with fixed points on the instanton moduli space, arXiv:1404.5304.

Previous article  Next article  Contents of Volume 18 (2022)