Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)

SIGMA 18 (2022), 089, 30 pages      arXiv:2107.14785

Rooted Clusters for Graph LP Algebras

Esther Banaian a, Sunita Chepuri b, Elizabeth Kelley c and Sylvester W. Zhang d
a) Department of Mathematics, Aarhus University, 8000 Aarhus, Denmark
b) Department of Mathematics, Lafayette College, Easton, PA 18042, USA
c) Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
d) School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received October 13, 2021, in final form November 17, 2022; Published online November 24, 2022

LP algebras, introduced by Lam and Pylyavskyy, are a generalization of cluster algebras. These algebras are known to have the Laurent phenomenon, but positivity remains conjectural. Graph LP algebras are finite LP algebras encoded by a graph. For the graph LP algebra defined by a tree, we define a family of clusters called rooted clusters. We prove positivity for these clusters by giving explicit formulas for each cluster variable. We also give a combinatorial interpretation for these expansions using a generalization of $T$-paths.

Key words: Laurent phenomenon algebra; cluster algebra; graph LP algebra; $T$-path.

pdf (551 kb)   tex (53 kb)  


  1. Bazier-Matte V., Chapelier-Laget N., Douville G., Mousavand K., Thomas H., Yildrm E., ABHY Associahedra and Newton polytopes of ${F}$-polynomials for finite type cluster algebras, arXiv:1808.09986.
  2. Bridgeland T., Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom. 4 (2017), 523-561, arXiv:1603.00416.
  3. Buan A.B., Marsh R., Reineke M., Reiten I., Todorov G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572-618, arXiv:math.RT/0402054.
  4. Chapoton F., Enumerative properties of generalized associahedra, Sém. Lothar. Combin. 51 (2004), Art. B51b, 16 pages, arXiv:math.CO/0401237.
  5. Chapoton F., Fomin S., Zelevinsky A., Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45 (2002), 537-566, arXiv:math.CO/0202004.
  6. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. 42 (2009), 865-930, arXiv:math.AG/0311245.
  7. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm. II. The intertwiner, in Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin, Vol. I, Progr. Math., Vol. 269, Birkhäuser Boston, Boston, MA, 2009, 655-673, arXiv:math.QA/0702398.
  8. Fomin S., Thurston D., Cluster algebras and triangulated surfaces, Part II: Lambda lengths, Mem. Amer. Math. Soc. 255 (2018), v+97 pages, arXiv:1210.5569.
  9. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:1210.5569.
  10. Fordy A.P., Hone A., Discrete integrable systems and Poisson algebras from cluster maps, Comm. Math. Phys. 325 (2014), 527-584, arXiv:1207.6072.
  11. Franco S., Bipartite field theories: from D-brane probes to scattering amplitudes, J. High Energy Phys. 2012 (2012), 141 pages, 49 pages, arXiv:1207.0807.
  12. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311, correction, Duke Math. J. 139 (2007), 407-409, arXiv:math.QA/0309138.
  13. Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Math. Surveys Monogr., Vol. 167, Amer. Math. Soc., Providence, RI, 2010.
  14. Gross M., Hacking P., Keel S., Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), 137-175, arXiv:1309.2573.
  15. Gunawan E., Musiker G., $T$-path formula and atomic bases for cluster algebras of type $D$, SIGMA 11 (2015), 060, 46 pages, arXiv:1409.3610.
  16. Ingalls C., Thomas H., Noncrossing partitions and representations of quivers, Compos. Math. 145 (2009), 1533-1562, arXiv:math.RT/0612219.
  17. Keller B., Cluster algebras, quiver representations and triangulated categories, in Triangulated Categories, London Math. Soc. Lecture Note Ser., Vol. 375, Cambridge University Press, Cambridge, 2010, 76-160, arXiv:0807.1960.
  18. Keller B., The periodicity conjecture for pairs of Dynkin diagrams, Ann. of Math. 177 (2013), 111-170, arXiv:1001.1531.
  19. Lam T., Pylyavskyy P., Laurent phenomenon algebras, Camb. J. Math. 4 (2016), 121-162, arXiv:1206.2611.
  20. Lam T., Pylyavskyy P., Linear Laurent phenomenon algebras, Int. Math. Res. Not. 2016 (2016), 3163-3203, arXiv:1206.2612.
  21. Musiker G., Ovenhouse N., Zhang S.W., An expansion formula for decorated super-Teichmüller spaces, SIGMA 17 (2021), 080, 34 pages, arXiv:2102.09143.
  22. Musiker G., Schiffler R., Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), 187-209, arXiv:0810.3638.
  23. Musiker G., Schiffler R., Williams L., Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308, arXiv:0906.0748.
  24. Reiten I., Tilting theory and quasitilted algebras, Doc. Math. 3 (1998), Extra Vol. II, 109-120, arXiv:1012.6014.
  25. Schiffler R., A cluster expansion formula ($A_n$ case), Electron. J. Combin. 15 (2008), 64, 9 pages, arXiv:math.RT/0611956.
  26. Schiffler R., On cluster algebras arising from unpunctured surfaces. II, Adv. Math. 223 (2010), 1885-1923, arXiv:0809.2593.
  27. Schiffler R., Thomas H., On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. 2009 (2009), 3160-3189, arXiv:0712.4131.

Previous article  Next article  Contents of Volume 18 (2022)