Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 138, 50 pages      arXiv:2003.13872      https://doi.org/10.3842/SIGMA.2020.138
Contribution to the Special Issue on Cluster Algebras

Snake Graphs from Triangulated Orbifolds

Esther Banaian and Elizabeth Kelley
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Received March 31, 2020, in final form December 08, 2020; Published online December 17, 2020

Abstract
We give an explicit combinatorial formula for the Laurent expansion of any arc or closed curve on an unpunctured triangulated orbifold. We do this by extending the snake graph construction of Musiker, Schiffler, and Williams to unpunctured orbifolds. In the case of an ordinary arc, this gives a combinatorial proof of positivity to the generalized cluster algebra from this orbifold.

Key words: generalized cluster algebra; cluster algebra; orbifold; snake graph.

pdf (817 kb)   tex (2376 kb)  

References

  1. Banaian E., Kelley E., Snake graphs and frieze patterns from orbifolds, Sém. Lothar. Combin. 82B (2019), 88, 12 pages, arXiv:2003.13872.
  2. Berenstein A., Fomin S., Zelevinsky A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52, arXiv:math.RT/0305434.
  3. Caldero P., Reineke M., On the quiver Grassmannian in the acyclic case, J. Pure Appl. Algebra 212 (2008), 2369-2380, arXiv:math.RT/0611074.
  4. Canakci I., Schiffler R., Snake graph calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240-281, arXiv:1209.4617.
  5. Canakci I., Tumarkin P., Bases for cluster algebras from orbifolds with one marked point, Algebr. Comb. 2 (2019), 355-365, arXiv:1711.00446.
  6. Chekhov L., Orbifold Riemann surfaces and geodesic algebras, J. Phys. A: Math. Theor. 42 (2009), 304007, 32 pages, arXiv:0911.0214.
  7. Chekhov L., Mazzocco M., Isomonodromic deformations and twisted Yangians arising in Teichmüller theory, Adv. Math. 226 (2011), 4731-4775, arXiv:0909.5350.
  8. Chekhov L., Shapiro M., Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables, Int. Math. Res. Not. 2014 (2014), 2746-2772, arXiv:1111.3963.
  9. Efimov A.I., Quantum cluster variables via vanishing cycles, arXiv:1112.3601.
  10. Felikson A., Shapiro M., Tumarkin P., Cluster algebras and triangulated orbifolds, Adv. Math. 231 (2012), 2953-3002, arXiv:1111.3449.
  11. Felikson A., Shapiro M., Tumarkin P., Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. 2012 (2012), 1768-1804, arXiv:1006.4276.
  12. Felikson A., Tumarkin P., Bases for cluster algebras from orbifolds, Adv. Math. 318 (2017), 191-232, arXiv:1511.08023.
  13. Fock V.V., Goncharov A.B., Dual Teichmüller and lamination spaces, in Handbook of Teichmüller Theory, Vol. I, IRMA Lect. Math. Theor. Phys., Vol. 11, Eur. Math. Soc., Zürich, 2007, 647-684, arXiv:math.DG/0510312.
  14. Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930, arXiv:math.AG/0311245.
  15. Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, arXiv:math.RA/0608367.
  16. Fomin S., Thurston D., Cluster algebras and triangulated surfaces Part II: Lambda lengths, Mem. Amer. Math. Soc. 255 (2018), v+97 pages, arXiv:1210.5569.
  17. Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, arXiv:math.RT/0104151.
  18. Fomin S., Zelevinsky A., The Laurent phenomenon, Adv. in Appl. Math. 28 (2002), 119-144, arXiv:math.CO/0104241.
  19. Fomin S., Zelevinsky A., Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), 63-121, arXiv:math.RA/0208229.
  20. Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, arXiv:math.RA/0208229.
  21. Gleitz A.S., Musiker G., Private communication.
  22. Gross M., Hacking P., Keel S., Kontsevich M., Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), 497-608, arXiv:1411.1394.
  23. Gunawan E., Musiker G., $T$-path formula and atomic bases for cluster algebras of type $D$, SIGMA 11 (2015), 060, 46 pages, arXiv:1409.3610.
  24. Holm T., Jørgensen P., A $p$-angulated generalisation of Conway and Coxeter's theorem on frieze patterns, Int. Math. Res. Not. 2020 (2020), 71-90, arXiv:1709.09861.
  25. Kimura Y., Qin F., Graded quiver varieties, quantum cluster algebras and dual canonical basis, Adv. Math. 262 (2014), 261-312, arXiv:1205.2066.
  26. Labardini-Fragoso D., Velasco D., On a family of Caldero-Chapoton algebras that have the Laurent phenomenon, J. Algebra 520 (2019), 90-135, arXiv:1704.07921.
  27. Lang W., The field $\mathbb{Q}(2\cos(\pi/n))$, its Galois group and length ratios in the regular $n$-gon, arXiv:1210.1018.
  28. Lee K., Schiffler R., Positivity for cluster algebras, Ann. of Math. 182 (2015), 73-125, arXiv:1306.2415.
  29. Musiker G., Schiffler R., Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), 187-209, arXiv:0810.3638.
  30. Musiker G., Schiffler R., Williams L., Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308, arXiv:0906.0748.
  31. Musiker G., Schiffler R., Williams L., Bases for cluster algebras from surfaces, Compos. Math. 149 (2013), 217-263, arXiv:1110.4364.
  32. Musiker G., Williams L., Matrix formulae and skein relations for cluster algebras from surfaces, Int. Math. Res. Not. 2013 (2013), 2891-2944, arXiv:1108.3382.
  33. Nakajima H., Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71-126, arXiv:0905.0002.
  34. Nakanishi T., Structure of seeds in generalized cluster algebras, Pacific J. Math. 277 (2015), 201-217, arXiv:1409.5967.
  35. Nakanishi T., Rupel D., Companion cluster algebras to a generalized cluster algebra, Trav. Math., Vol. 24, Fac. Sci. Technol. Commun. Univ. Luxemb., Luxembourg, 2016, 129-149, arXiv:1504.06758.
  36. Nakanishi T., Zelevinsky A., On tropical dualities in cluster algebras, in Algebraic Groups and Quantum Groups, Contemp. Math., Vol. 565, Amer. Math. Soc., Providence, RI, 2012, 217-226, arXiv:1101.3736.
  37. Paquette C., Schiffler R., Group actions on cluster algebras and cluster categories, Adv. Math. 345 (2019), 161-221, arXiv:1703.06174.
  38. Propp J., Lattice structure for orientations of graphs, arXiv:math.CO/0209005.
  39. Qin F., Quantum cluster variables via Serre polynomials, J. Reine Angew. Math. 668 (2012), 149-190, arXiv:1004.4171.
  40. Satake I., On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. USA 42 (1956), 359-363.
  41. Schiffler R., On cluster algebras arising from unpunctured surfaces. II, Adv. Math. 223 (2010), 1885-1923, arXiv:0809.2593.
  42. Schiffler R., Thomas H., On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. 2009 (2009), 3160-3189, arXiv:0712.4131.
  43. Thurston W.P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), 417-431.
  44. Thurston W.P., Three-dimensional geometry and topology, Vol. 1, Princeton Mathematical Series, Vol. 35, Princeton University Press, Princeton, NJ, 1997.

Previous article  Next article  Contents of Volume 16 (2020)