Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 137, 22 pages      arXiv:1904.06515      https://doi.org/10.3842/SIGMA.2020.137

Hom-Lie Algebras and Hom-Lie Groups, Integration and Differentiation

Jun Jiang a, Satyendra Kumar Mishra b and Yunhe Sheng a
a) Department of Mathematics, Jilin University, Changchun, Jilin Province, 130012, China
b) Statistics and Mathematics Unit, Indian Statistical Institute Bangalore, India

Received June 01, 2020, in final form December 10, 2020; Published online December 17, 2020

Abstract
In this paper, we introduce the notion of a (regular) Hom-Lie group. We associate a Hom-Lie algebra to a Hom-Lie group and show that every regular Hom-Lie algebra is integrable. Then, we define a Hom-exponential ($\mathsf{Hexp}$) map from the Hom-Lie algebra of a Hom-Lie group to the Hom-Lie group and discuss the universality of this $\mathsf{Hexp}$ map. We also describe a Hom-Lie group action on a smooth manifold. Subsequently, we give the notion of an adjoint representation of a Hom-Lie group on its Hom-Lie algebra. At last, we integrate the Hom-Lie algebra $(\mathfrak{gl}(V),[\cdot,\cdot],\mathsf{Ad})$, and the derivation Hom-Lie algebra of a Hom-Lie algebra.

Key words: Hom-Lie algebra; Hom-Lie group; derivation; automorphism; integration.

pdf (443 kb)   tex (23 kb)  

References

  1. Ammar F., Ejbehi Z., Makhlouf A., Cohomology and deformations of Hom-algebras, J. Lie Theory 21 (2011), 813-836, arXiv:1005.0456.
  2. Bohm G., Vercruysse J., BiHom Hopf algebras viewed as Hopf monoids, arXiv:2003.08819.
  3. Caenepeel S., Goyvaerts I., Monoidal Hom-Hopf algebras, Comm. Algebra 39 (2011), 2216-2240, arXiv:0907.0187.
  4. Cai L., Liu J., Sheng Y., Hom-Lie algebroids, Hom-Lie bialgebroids and Hom-Courant algebroids, J. Geom. Phys. 121 (2017), 15-32, arXiv:1605.04752.
  5. Cai L., Sheng Y., Hom-big brackets: theory and applications, SIGMA 12 (2016), 014, 18 pages, arXiv:1507.04061.
  6. Hartwig J.T., Larsson D., Silvestrov S.D., Deformations of Lie algebras using $\sigma$-derivations, J. Algebra 295 (2006), 314-361, arXiv:math.QA/0408064.
  7. Hassanzadeh M., Hom-groups, representations and homological algebra, Colloq. Math. 158 (2019), 21-38, arXiv:1801.07398.
  8. Hassanzadeh M., Lagrange's theorem for Hom-groups, Rocky Mountain J. Math. 49 (2019), 773-787, arXiv:1803.07678.
  9. Hu N., $q$-Witt algebras, $q$-Lie algebras, $q$-holomorph structure and representations, Algebra Colloq. 6 (1999), 51-70, arXiv:math.QA/0512526.
  10. Larsson D., Silvestrov S.D., Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities, J. Algebra 288 (2005), 321-344, arXiv:math.RA/0408061.
  11. Larsson D., Silvestrov S.D., Quasi-Lie algebras, in Noncommutative Geometry and Representation Theory in Mathematical Physics,Contemp. Math., Vol. 391, Amer. Math. Soc., Providence, RI, 2005, 241-248.
  12. Larsson D., Silvestrov S.D., Quasi-deformations of ${\mathfrak{sl}}_2({\mathbb F})$ using twisted derivations, Comm. Algebra 35 (2007), 4303-4318, arXiv:math.RA/0506172.
  13. Laurent-Gengoux C., Makhlouf A., Teles J., Universal algebra of a Hom-Lie algebra and group-like elements, J. Pure Appl. Algebra 222 (2018), 1139-1163, arXiv:1505.02439.
  14. Laurent-Gengoux C., Teles J., Hom-Lie algebroids, J. Geom. Phys. 68 (2013), 69-75, arXiv:1211.2263.
  15. Makhlouf A., Silvestrov S., Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math. 22 (2010), 715-739, arXiv:0712.3130.
  16. Mandal A., Mishra S.K., Hom-Lie-Rinehart algebras, Comm. Algebra 46 (2018), 3722-3744, arXiv:1610.01477.
  17. Sheng Y., Representations of hom-Lie algebras, Algebr. Represent. Theory 15 (2012), 1081-1098, arXiv:1005.0140.
  18. Sheng Y., Chen D., Hom-Lie 2-algebras, J. Algebra 376 (2013), 174-195, arXiv:1110.3405.
  19. Sheng Y., Xiong Z., On Hom-Lie algebras, Linear Multilinear Algebra 63 (2015), 2379-2395, arXiv:1411.6839.
  20. Yau D., Enveloping algebras of Hom-Lie algebras, J. Gen. Lie Theory Appl. 2 (2008), 95-108, arXiv:0709.0849.
  21. Yau D., Hom-quantum groups: I. Quasi-triangular Hom-bialgebras, J. Phys. A: Math. Theor. 45 (2012), 065203, 23 pages, arXiv:0906.4128.

Previous article  Next article  Contents of Volume 16 (2020)