Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 080, 19 pages      arXiv:1908.01535      https://doi.org/10.3842/SIGMA.2020.080
Contribution to the Special Issue on Primitive Forms and Related Topics in honor of Kyoji Saito for his 77th birthday

Modular Construction of Free Hyperplane Arrangements

Shuhei Tsujie
Department of Education, Hokkaido University of Education, Hokkaido, Japan

Received January 29, 2020, in final form August 13, 2020; Published online August 22, 2020

Abstract
In this article, we study freeness of hyperplane arrangements. One of the most investigated arrangement is a graphic arrangement. Stanley proved that a graphic arrangement is free if and only if the corresponding graph is chordal and Dirac showed that a graph is chordal if and only if the graph is obtained by ''gluing'' complete graphs. We will generalize Dirac's construction to simple matroids with modular joins introduced by Ziegler and show that every arrangement whose associated matroid is constructed in the manner mentioned above is divisionally free. Moreover, we apply the result to arrangements associated with gain graphs and arrangements over finite fields.

Key words: hyperplane arrangement; free arrangement; matroid; modular join; chordality.

pdf (456 kb)   tex (28 kb)  

References

  1. Abe T., Divisionally free arrangements of hyperplanes, Invent. Math. 204 (2016), 317-346, arXiv:1502.07520.
  2. Abe T., Restrictions of free arrangements and the division theorem, in Perspectives in Lie Theory, Springer INdAM Ser., Vol. 19, Editors F. Callegaro, G. Carnovale, F. Caselli, C. De Concini, A. De Sole, Springer, Cham, 2017, 389-401, arXiv:1603.03863.
  3. Athanasiadis C.A., On free deformations of the braid arrangement, European J. Combin. 19 (1998), 7-18.
  4. Björner A., Edelman P.H., Ziegler G.M., Hyperplane arrangements with a lattice of regions, Discrete Comput. Geom. 5 (1990), 263-288.
  5. Borissova S., Regular round matroids, Master Thesis, California State University, 2016, available at https://scholarworks.lib.csusb.edu/etd/423.
  6. Brylawski T., Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975), 1-44.
  7. Dirac G.A., On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961), 71-76.
  8. Dowling T.A., A class of geometric lattices based on finite groups, J. Combin. Theory Ser. B 14 (1973), 61-86.
  9. Edelman P.H., Reiner V., Free hyperplane arrangements between $A_{n-1}$ and $B_n$, Math. Z. 215 (1994), 347-365.
  10. Edelman P.H., Reiner V., Free arrangements and rhombic tilings, Discrete Comput. Geom. 15 (1996), 307-340.
  11. Jambu M., Papadima S., A generalization of fiber-type arrangements and a new deformation method, Topology 37 (1998), 1135-1164.
  12. Jambu M., Terao H., Free arrangements of hyperplanes and supersolvable lattices, Adv. Math. 52 (1984), 248-258.
  13. Koban L., Comments on: ''Supersolvable frame-matroid and graphic-lift lattices'' [European J. Combin. 22 (2001), 119-133] by T. Zaslavsky, European J. Combin. 25 (2004), 141-144.
  14. Kung J.P.S., Numerically regular hereditary classes of combinatorial geometries, Geom. Dedicata 21 (1986), 85-105.
  15. Lindström B., On strong joins and pushout of combinatorial geometries, J. Combin. Theory Ser. A 25 (1978), 77-79.
  16. Nakashima N., Tsujie S., Enumeration of flats of the extended Catalan and Shi arrangements with species, arXiv:1904.09748.
  17. Orlik P., Terao H., Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften, Vol. 300, Springer-Verlag, Berlin, 1992.
  18. Oxley J., Matroid theory, 2nd ed., Oxford Graduate Texts in Mathematics, Vol. 21, Oxford University Press, Oxford, 2011.
  19. Postnikov A., Stanley R.P., Deformations of Coxeter hyperplane arrangements, J. Combin. Theory Ser. A 91 (2000), 544-597, arXiv:math.CO/9712213.
  20. Probert A.M., Chordality in matroids: in search of the converse to Hlinĕný's theorem, Ph.D. Thesis, Victoria University of Wellington, 2018.
  21. Saito K., On the uniformization of complements of discriminant loci, in Hyperfunction and Linear Differential Equations, RIMS Kôky^uroku, Vol. 287, Res. Inst. Math. Sci. (RIMS), Kyoto, 1977, 117-137.
  22. Saito K., Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265-291.
  23. Stanley R.P., Modular elements of geometric lattices, Algebra Universalis 1 (1971), 214-217.
  24. Stanley R.P., Supersolvable lattices, Algebra Universalis 2 (1972), 197-217.
  25. Suyama D., Torielli M., Tsujie S., Signed graphs and the freeness of the Weyl subarrangements of type $B_\ell$, Discrete Math. 342 (2019), 233-249, arXiv:1707.01967.
  26. Terao H., Generalized exponents of a free arrangement of hyperplanes and Shepherd-Todd-Brieskorn formula, Invent. Math. 63 (1981), 159-179.
  27. Terao H., Modular elements of lattices and topological fibration, Adv. Math. 62 (1986), 135-154.
  28. Torielli M., Palezzato E., Free hyperplane arrangements over arbitrary fields, J. Algebraic Combin. 52 (2020), 237-249, arXiv:1803.09908.
  29. Torielli M., Tsujie S., Freeness of Hyperplane arrangements between Boolean arrangements and Weyl arrangements of type $B_\ell$, Electron. J. Combin. 27 (2020), P3.10, 15 pages, arXiv:1807.02432.
  30. Welsh D.J.A., Matroid theory, Dover Books on Mathematics, Dover Publications, Mineola, N.Y., 2010.
  31. Yoshinaga M., Characterization of a free arrangement and conjecture of Edelman and Reiner, Invent. Math. 157 (2004), 449-454.
  32. Yoshinaga M., Free arrangements over finite field, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), 179-182, arXiv:math.CO/0606005.
  33. Zaslavsky T., Biased graphs. I. Bias, balance, and gains, J. Combin. Theory Ser. B 47 (1989), 32-52.
  34. Zaslavsky T., Biased graphs. II. The three matroids, J. Combin. Theory Ser. B 51 (1991), 46-72.
  35. Zaslavsky T., Supersolvable frame-matroid and graphic-lift lattices, European J. Combin. 22 (2001), 119-133.
  36. Zaslavsky T., Biased graphs. IV. Geometrical realizations, J. Combin. Theory Ser. B 89 (2003), 231-297.
  37. Ziegler G.M., Matroid representations and free arrangements, Trans. Amer. Math. Soc. 320 (1990), 525-541.
  38. Ziegler G.M., Binary supersolvable matroids and modular constructions, Proc. Amer. Math. Soc. 113 (1991), 817-829.

Previous article  Next article  Contents of Volume 16 (2020)