Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 063, 16 pages      arXiv:1903.09738      https://doi.org/10.3842/SIGMA.2020.063
Contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quantum Field Theory

The Elliptic Painlevé Lax Equation vs. van Diejen's 8-Coupling Elliptic Hamiltonian

Masatoshi Noumi a, Simon Ruijsenaars b and Yasuhiko Yamada a
a)  Department of Mathematics, Kobe University, Rokko, Kobe 657-8501, Japan
b)  School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

Received April 20, 2020, in final form June 26, 2020; Published online July 08, 2020

Abstract
The 8-parameter elliptic Sakai difference Painlevé equation admits a Lax formulation. We show that a suitable specialization of the Lax equation gives rise to the time-independent Schrödinger equation for the $BC_1$ 8-parameter 'relativistic' Calogero-Moser Hamiltonian due to van Diejen. This amounts to a generalization of previous results concerning the Painlevé-Calogero correspondence to the highest level in the two hierarchies.

Key words: Painlevé-Calogero correspondence; elliptic difference Painlevé equation; Ruijsenaars-van Diejen Hamiltonian.

pdf (370 kb)   tex (20 kb)  

References

  1. Bertola M., Cafasso M., Rubtsov V., Noncommutative Painlevé equations and systems of Calogero type, Comm. Math. Phys. 363 (2018), 503-530, arXiv:1710.00736.
  2. Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation, Lett. Math. Phys. 38 (1996), 145-154, arXiv:chao-dyn/9507010.
  3. Kajiwara K., Noumi M., Yamada Y., Geometric aspects of Painlevé equations, J. Phys. A: Math. Theor. 50 (2017), 073001, 164 pages, arXiv:1509.08186.
  4. Komori Y., Noumi M., Shiraishi J., Kernel functions for difference operators of Ruijsenaars type and their applications, SIGMA 5 (2009), 054, 40 pages, arXiv:0812.0279.
  5. Noumi M., Tsujimoto S., Yamada Y., Padé interpolation for elliptic Painlevé equation, in Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., Vol. 40, Springer, Heidelberg, 2013, 463-482, arXiv:1204.0294.
  6. Rains E., Ruijsenaars S., Difference operators of Sklyanin and van Diejen type, Comm. Math. Phys. 320 (2013), 851-889, arXiv:1203.0042.
  7. Rains E.M., An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations), SIGMA 7 (2011), 088, 24 pages, arXiv:0807.0258.
  8. Ruijsenaars S.N.M., First order analytic difference equations and integrable quantum systems, J. Math. Phys. 38 (1997), 1069-1146.
  9. Ruijsenaars S.N.M., Hilbert-Schmidt operators vs. integrable systems of elliptic Calogero-Moser type IV. The relativistic Heun (van Diejen) case, SIGMA 11 (2015), 004, 78 pages, arXiv:1404.4392.
  10. Sakai H., Rational surfaces associated with affine root systems and geometry of the Painlevé equations, Comm. Math. Phys. 220 (2001), 165-229.
  11. Takasaki K., Painlevé-Calogero correspondence revisited, J. Math. Phys. 42 (2001), 1443-1473.
  12. Takemura K., Heun equation and Painlevé equation, in Proceedings of the Kyoto 2004 Workshop ''Elliptic Integrable Systems'', Rokko Lectures in Math., Vol. 18, Editors M. Noumi, K. Takasaki, Kobe University, 2005, 305-322, arXiv:math.CA/0503288.
  13. Takemura K., Degenerations of Ruijsenaars-van Diejen operator and $q$-Painlevé equations, J. Integrable Syst. 2 (2017), xyx008, 27 pages, arXiv:1608.07265.
  14. van Diejen J.F., Integrability of difference Calogero-Moser systems, J. Math. Phys. 35 (1994), 2983-3004.
  15. Whittaker E.T., Watson G.N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996.
  16. Yamada Y., A Lax formalism for the elliptic difference Painlevé equation, SIGMA 5 (2009), 042, 15 pages, arXiv:0811.1796.
  17. Yamada Y., Lax formalism for $q$-Painlevé equations with affine Weyl group symmetry of type $E^{(1)}_n$, Int. Math. Res. Not. 2011 (2011), 3823-3838, arXiv:1004.1687.
  18. Yamada Y., An elliptic Garnier system from interpolation, SIGMA 13 (2017), 069, 8 pages, arXiv:1706.05155.
  19. Zabrodin A., Zotov A., Quantum Painlevé-Calogero correspondence for Painlevé VI, J. Math. Phys. 53 (2012), 073508, 19 pages, arXiv:1107.5672.

Previous article  Next article  Contents of Volume 16 (2020)