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1 Introduction

There exists a well-known correspondence between the nonlinear 4-parameter Painlevé diffe-
rential equation P(VI) and the linear 4-parameter Heun equation. The former admits a Lax
formulation, and a suitable specialization of one of the linear Lax equations yields the Heun
equation. This correspondence has come to be known as the Painlevé–Calogero correspondence.
Indeed, the Heun equation can be viewed as the time-independent Schrödinger equation associ-
ated with the elliptic BC1 Calogero Hamiltonian (also known as the 1-particle specialization of
the Inozemtsev integrable particle system). This correspondence has been elaborated on from
several viewpoints in [11, 12, 19].1

A decade ago, one of us (S.R.) conjectured that there might exist a similar connection between
van Diejen’s [14] 8-parameter analytic difference operator and a Lax formulation for Sakai’s [10]
8-parameter elliptic Painlevé difference equation. A Lax formulation of the latter equation was
obtained in [7, 16] and then simplified in [5] (see [3] for a review). In this article we prove the
conjecture by invoking the Lax equation that occurs in equation (4.4) in the recent paper [18].

Previous results of a similar nature were recently obtained by Takemura [13]. They involve
various specializations with fewer than 8 parameters, making use of Lax formulations of the
pertinent difference Painlevé equations in [17] and Jimbo–Sakai [2].

Our main result amounts to a generalized Painlevé–Calogero correspondence at the highest
level of both the Painlevé hierarchy and the rank-1 (or ‘one-particle’) Calogero–Moser hierarchy.
A recent survey of the Painlevé equations can be found in [3], detailing a great many specializa-
tions and confluence limits. To date there exists no similar exhaustive published version of the
corresponding degenerations of the van Diejen Hamiltonian.

This paper is a contribution to the Special Issue on Elliptic Integrable Systems, Special Functions and Quan-
tum Field Theory. The full collection is available at https://www.emis.de/journals/SIGMA/elliptic-integrable-
systems.html

1For the higher rank models, there is also a correspondence [11], where the Painlevé side of the correspondence
is a kind of multi-dimensional extension different from the Garnier systems (see [1] for recent developments).

https://doi.org/10.3842/SIGMA.2020.063
https://www.emis.de/journals/SIGMA/elliptic-integrable-systems.html
https://www.emis.de/journals/SIGMA/elliptic-integrable-systems.html
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In this article we use the latter in the somewhat different guise of the operator A+(γ;x)
defined by equations (1.8) and (3.1)–(3.7) in [9]. (We shall detail its definition shortly.) It
differs from van Diejen’s operator by multiplicative and additive constants, yielding a version
that gives rise to various parameter symmetries. In particular, there exists a natural similarity
transform A+(γ;x) (defined by equations (1.23) and (3.12) of [9]) that exhibits manifest sym-
metry under permutations and even sign changes of the 8 coupling-type parameters γ0, . . . , γ7.
Under certain restrictions, this W (D8) symmetry is shown to extend to a W (E8) spectral invari-
ance of A+(γ;x), reinterpreted as a self-adjoint operator on a suitable Hilbert space [9]. This

is clearly analogous to the W
(
E

(1)
8

)
symmetry of Sakai’s elliptic Painlevé equation. Even so,

just as the correspondence we establish, to date this state of affairs is not understood at a more
fundamental level.

We proceed to specify the notations used in [9] and [18], and to set up a translation between
them. To this end we begin by comparing the two starting points, which involve distinct con-
ventions for the elliptic gamma function. The convention in [18] is now used in most of the
literature that employs the elliptic gamma function, namely,

Γp,q(z) ≡
∞∏

k,l=0

1− z−1pk+1ql+1

1− zpkql
. (1.1)

This yields the q-difference equation

Γp,q(qz) = [z]Γp,q(z),

with [z] the key building block of [18],

[z] =

∞∏
m=0

(
1− zpm

)(
1− z−1pm+1

)
. (1.2)

Thus, [z] can be viewed as a theta function, but it differs from the four Jacobi theta functions,
inasmuch as it is neither even nor odd.

By contrast, in [9] the ‘original’ definition of the elliptic gamma function [8] is used, viz.,

G(r, a+, a−;x) ≡
∞∏

m,n=0

1− exp
(
−(2m+ 1)ra+ − (2n+ 1)ra− − 2irx

)
1− exp

(
−(2m+ 1)ra+ − (2n+ 1)ra− + 2irx

) . (1.3)

Thus we need to substitute

p = exp(−2ra+), q = exp(−2ra−), (1.4)

and

z = exp(2ir(x+ ia)), a ≡ (a+ + a−)/2, (1.5)

on the r.h.s. of (1.1) to arrive at the r.h.s. of (1.3). (The second convention has definite advantages
for quantum-mechanical purposes, but its drawback is that it deviates from the Euler gamma
function by not having its ‘first’ simple pole at x = 0, but at x = −ia; by contrast, Γp,q(z) has
its ‘first’ simple pole at z = 1.)

For the purpose of this paper, the building block in this second setting is one of the two right-
hand side functions arising from the analytic difference equations (henceforth called A∆Es)

G(x+ iaδ/2)

G(x− iaδ/2)
= R−δ(x), δ = +,−, (1.6)
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namely,

R+(x) =

∞∏
m=0

[1− exp(2irx− (2m+ 1)ra+)][1− exp(−2irx− (2m+ 1)ra+)]. (1.7)

Up to normalization, this is one of the Jacobi theta functions, cf. [15]. It is even, π/r-periodic,
and has no real zeros; the only further property that needs to be often used in the sequel is
the A∆E

R+(x+ ia+/2) = − exp(−2irx)R+(x− ia+/2), (1.8)

which can be deduced from (1.7).
After the substitutions (1.4) and (1.5) on the r.h.s. of (1.2), we can compare to (1.7) to obtain

the key relation

[z] = R+

(
1

2ir
ln z − ia+/2

)
(1.9)

between the two building blocks.
We are now prepared to focus on the two equations at issue. Van Diejen’s operator is of the

form

A+(γ;x) = V (γ;x) exp(−ia−d/dx) + V (γ;−x) exp(ia−d/dx) + Vb(γ;x). (1.10)

Here we have

V (γ;x) ≡

7∏
µ=0

R+(x− iγµ − ia−/2)

R+(2x+ ia+/2)R+(2x+ ia+/2− ia−)
, (1.11)

whereas Vb(γ;x) is an even elliptic function with periods π/r, ia+. It is uniquely determined
up to a constant by specifying the residues at its (generically) simple poles, which occur at the
zeros of the factors R+(±2x+ ia+/2− ia−) of the shift coefficients V (γ;±x). (Thus we get eight
poles in a period parallelogram.) We shall define the residues later on, cf. (3.4)–(3.10).

The operator A+(γ;x) is viewed as a quantum-mechanical one, in the sense that the pertinent
equation to solve is the time-independent Schrödinger equation

(A+(γ;x)− E)ψ(x) = 0. (1.12)

By contrast, at face value the equation in [18] (N = 3 case of L1 in equation (4.4)) has a different
structure. Indeed, it is given in the form of a q-difference equation that is not of this Schrödinger
type, namely,

W−(z)y(z/q) +W+(z)y(qz)−R(z)y(z) = 0. (1.13)

Here we have

W−(z) ≡ A(k/z)B(z)F(qz)
[
k/q2z2

]
, (1.14)

W+(z) ≡ A(qz)B(k/qz)F(z)
[
k/z2

]
, (1.15)

with

A(z) ≡
4∏
j=1

[z/aj ], B(z) ≡
4∏
j=1

[z/bj ], F(z) ≡ Cz[z/λ][k/zλ]. (1.16)

The parameter C can be viewed as a gauge parameter and the parameter k arises from the ex-
tended affine E8 Weyl group picture associated with the elliptic Sakai equation. Also, λ encodes
one of the two initial values for this equation, (1.13) being one of the two corresponding Lax
equations, cf. equation (4.4) of [18].
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Remark 1.1. Sakai’s Painlevé equation has a bi-rational form in algebraic coordinates (f, g) ∈
P1×P1. The coordinates f , g and λ, ξ1 (3.16) are related as f = f(λ), g = g(ξ1) where f(u), g(u)
are certain elliptic functions. In terms of the coordinates f , g, the Lax equation (1.13) has the
geometric characterization as a bi-degree (3, 2) curve passing through certain 12 points (see [3,
Section 7] for example).

To unburden the exposition in this introductory section, we do not completely specify R(z)
for now. Indeed, its definition is somewhat involved, just like the definition of the additive
potential Vb(γ;x). However, it is expedient to detail at this stage the building block of R(z)
that carries the dependence on the eight fixed points aj , bj , j = 1, . . . , 4, viz.,

U(z) ≡ A(z)B(z). (1.17)

In general terms, R(z) also depends on the above function F(z) and a further function G(z) that
involves an extra parameter ξ1 encoding the second initial value for the elliptic Sakai equation.
(The details of the definition of R(z) can be found in equations (3.12)–(3.19).)

Now the problem at issue is whether we can recast the Lax equation (1.13) in an alternative
form, such that upon a suitable specialization of C, k, λ and ξ1 it takes the form of the eigenvalue
equation (1.12).

To begin with, it is clear from (1.5) and (1.4) that we can switch from z to x by setting

ψ(x) = y(2ir(x+ ia)), (1.18)

so that the multiplicative q-shifts in (1.13) turn into the additive ia−-shifts in (1.12).
Next, we recall that the variable change z → x entails the relation (1.9) between the building

block functions [z] and R+(x). We shall often use (1.9) in the sequel. For example, we have
occasion to invoke the formula[

k/qz2
]

= R+

(
1

2ir

(
ln k − ln q

)
− 2(x+ ia)− ia+/2

)
= R+(2x− (ln k)/2ir + 2ia− + 3ia+/2), (1.19)

where we used (1.4) and evenness. Likewise, we need the formulas

[z/aj ] = R+(x− (ln aj)/2ir + ia−/2), [z/bj ] = R+(x− (ln bj)/2ir + ia−/2), (1.20)

so as to connect the eight parameters aj and bj to the eight γµ’s.
The resulting division of the eight γµ’s into two groups of four is clearly arbitrary, since

the function V (γ;x) (1.11) is invariant under permutations of the γµ’s. In fact, taking gauge
transformations into account, we can also change the signs of the γµ’s in V (γ;x), in keeping
with the above-mentioned W (D8) invariance of the similarity transform A+(γ;x) of A+(γ;x).
Indeed, as we shall see in Section 3, the additive part Vb(γ;x) is manifestly invariant under
permutations and an even number of sign changes.

This state of affairs is crucial for the correspondence we aim to establish. We shall opt for
choosing

aj = q exp(−2rγj−1), bj = q exp(−2rγj+3), j = 1, 2, 3, 4, (1.21)

so that we get from (1.17) and (1.20) the permutation-invariant function

U(z) =

4∏
j=1

[z/aj ][z/bj ] =

7∏
µ=0

R+(x− iγµ − ia−/2). (1.22)
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When we now consider the factors [z/bj ] in W−(z) (1.14) and [qz/aj ] in W+(z) (1.15), we see
upon comparison to V (γ;x) and V (γ;−x) that we need to switch the sign of γ0, . . . , γ3 in V (γ;x)
to obtain equality of these four factors.

We can readily change the sign of γµ in V (γ;x) by using a gauge factor

Gµ(x) ≡ G(x+ iγµ)/G(x− iγµ).

Specifically, using the G-A∆E (1.6) with δ = −, we get

1

Gµ(x)
exp(−ia−d/dx)Gµ(x) =

R+(x− iγµ − ia−/2)

R+(x+ iγµ − ia−/2)
exp(−ia−d/dx),

and

1

Gµ(x)
exp(ia−d/dx)Gµ(x) =

R+(x+ iγµ + ia−/2)

R+(x− iγµ + ia−/2)
exp(ia−d/dx),

from which our assertion easily follows. As a consequence, we can employ a transformation with
(G0G1G2G3)(x) so as to transform the shift coefficient

Ṽ (γ;x) ≡

3∏
µ=0

R+(x+ iγµ − ia−/2)
7∏

µ=4
R+(x− iγµ − ia−/2)

R+(2x+ ia+/2)R+(2x+ ia+/2− ia−)
, (1.23)

back to V (γ;x) (1.11).

Besides the option to perform gauge transformations so as to change the shift part, we can
also multiply the equation (1.13) by a suitable function. In the following sections we shall
exploit this freedom, alongside further reparametrizations, so as to relate it to the Schrödinger
equation (1.12). We do this in two stages, which enables us to get a better picture of the cogency
of the correspondence at hand. In Section 2 we first focus on the shift part of the equations.
This reveals that there is a very limited choice in specializing the shift part of (1.13) so that
the gauge-transformed shift part of the van Diejen Hamiltonian (1.10) arises. Indeed, already
in this first stage it is remarkable that this is feasible.

The acid test is then whether the pertinent choices are compatible with having the same
additive part. This test is addressed and passed in Section 3. In Section 4 we add further
insights. In particular, we show that the somewhat implicit parametrization of the function R(z)
in (1.13) can be made fully explicit.

2 The relation between the shift parts

As a first step, we should complete the connection between the factors of W±(z) and Ṽ (γ;±x)
(1.23) that depend on the parameters aj , bj and γµ. Proceeding as before, we get by using (1.21)
for the factors [k/zaj ] in W−(z) (1.14) and the factors [k/qzbj ] in W+(z) (1.15) the relations

[k/zaj ] = R+(x+ iγj−1 − (ln k)/2ir + 3ia−/2 + ia+), j = 1, 2, 3, 4,

and

[k/qzbj ] = R+(x+ iγj+3 − (ln k)/2ir + 5ia−/2 + ia+), j = 1, 2, 3, 4.

Clearly, the simplest way to turn this into the factors R+(x+ iγj−1 − ia−/2) in Ṽ (γ;x) and the
factors R+(x+iγj+3+ia−/2) in Ṽ (γ;−x) is to choose k equal to pq2. Indeed, this yields equality
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of the pertinent 4-parameter factors, hence completing the connection between the 8-parameter
factors in W±(z) and Ṽ (γ;±x).

At this point it should be stressed that we do not know any a priori reason for the parameter k
to be equal under these two distinct determinations. Put differently, at this rather early stage
we could already have hit an unsurmountable snag in setting up the desired correspondence.

Requiring from now on

k = pq2 = exp(−2ra+) exp(−4ra−),

we get from (1.19)[
k/qz2

]
= R+(2x+ ia+/2), (2.1)

and likewise[
k/q2z2

]
= R+(2x+ ia+/2 + ia−),

[
k/z2

]
= R+(2x+ ia+/2− ia−), (2.2)

as is readily verified.
We proceed by dividing (1.13) by the product[

k/z2
][
k/qz2

][
k/q2z2

]
= R+(2x+ ia+/2− ia−)R+(2x+ ia+/2)R+(2x+ ia+/2 + ia−). (2.3)

Accordingly, the shift part can be rewritten as (recall (1.18))

F(qz)Ṽ (γ;x)ψ(x− ia−) + qF(z)e8irxṼ (γ;−x)ψ(x+ ia−), (2.4)

where we used the R+-A∆E (1.8).
Next, we put λ = qν, so that (1.16) becomes

F(z) = Cz[z/qν][pq/zν].

Then we divide (2.4) by

Cp−1z3[z/qν][p/zν], (2.5)

so that we obtain the new shift part

e−4irx
[z/ν]

[z/qν]
Ṽ (γ;x)ψ(x− ia−) + e4irx

[pq/zν]

[p/zν]
Ṽ (γ;−x)ψ(x+ ia−).

As our final reparametrization, we now set ν = exp(−2rγ8). Then we readily obtain

[z/ν]

[z/qν]
=
R+(x− iγ8 + ia−/2)

R+(x− iγ8 − ia−/2)
,

and

[pq/zν]

[p/zν]
=
R+(x+ iγ8 − ia−/2)

R+(x+ iγ8 + ia−/2)
.

As a result, we need only specialize γ8 to one of γµ, µ = 4, 5, 6, 7, in Ṽ (γ;±x) to arrive at
coefficients of the same structure, the only difference being that the pertinent γµ is replaced by
γµ − a−. When we ignore the plane wave factors, we therefore get the shift part of a (gauge-
transformed) van Diejen operator with

γµ → γµ − a−. (2.6)
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To be sure, we should still take care of the plane waves, but they can be removed by a second
gauge transformation. The simplest way to do so is by using a gauge function of the form
exp

(
c1x

2 + c2x
)
. However, this function is not π/r-periodic, which seems ‘unnatural’.

In order to avoid this problem, we shall use the π/r-periodic gauge function

g(x) ≡ R−(x− ia−/2)R−(x+ ia−/2). (2.7)

(Here R− is given by the r.h.s. of (1.7) with a+ → a−.) Indeed, we have

1

g(x)
exp(∓ia−d/dx)g(x) = q−1e±4irx exp(∓ia−d/dx). (2.8)

Thus it remains to multiply the equation (1.13) by q to obtain what we want.
Admittedly, the function g(x) also seems somewhat ‘alien’ in the Lax context. But at least

it is quite natural in the van Diejen context, in view of the modular symmetry of the latter [9].
In any event, we see no way to avoid this gauge transformation in establishing the desired
connection for the shift parts.

3 The relation between the additive parts

Let us now take stock of our findings in the previous section. We should divide the equation (1.13)
by the product

P (z) ≡ Cp−1q−1z3[z/λ][k/qzλ]
[
k/z2

][
k/qz2

][
k/q2z2

]
, (3.1)

cf. (2.5) and (2.3), the factor q−1 resulting from the gauge transformation (2.7)–(2.8). In the
resulting equation, we should trade the parameters p and q for a+ and a− by using (1.4), the
variable z for x by using (1.5), and we should reparametrize aj , bj via (1.21). Finally, we need
to choose

k = pq2, λ = q exp(−2rγ8). (3.2)

The acid test is now whether the ratio −R(z)/P (z) becomes equal to Vb(γ;x)−E under the
above reparametrizations, once we choose (say)2

γ8 = γ7, (3.3)

and substitute

γ7 → γ7 − a−,

in Vb(γ;x), cf. (2.6). The expectation is that the additional parameters occurring in −R(z)/P (z)
should give rise to the eigenvalue E, as a counterpart of the second P(VI) initial value becoming
proportional to the eigenvalue in the Heun equation in elliptic Schrödinger form under the
Painlevé–Calogero correspondence.

Before discussing R(z) as given in [18], let us define Vb(γ;x). We shall not follow [9] in doing
so, but rather use the characterization that can be found in [6] (see also [4] for an explicit form
of the operators together with their relation to original one). This is a definition that specifies
Vb(γ;x) uniquely up to an arbitrary additive constant.

2In terms of the variables (f, g) in Remark 1.1, this specialization of the variable λ corresponds to putting
f = f(b4). Under this specialization, the equation (1.13) is factored by g− g(b4) due to the geometric characteri-
zation. As we will see below, the quotient gives the van Diejen operator with E = (ag+ b)/(g− g(k/b4)) (a, b are
constants).
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Specifically, Vb(γ;x) is an even elliptic function with periods π/r and ia+, having eight
(generically) simple poles in a period parallelogram. Modulo the elliptic lattice, these are located
at x = ±xn, n = 0, 1, 2, 3, where

{x0, x1, x2, x3} := −ia−/2 + {0, π/2r, ia+/2, ia+/2 + π/2r}. (3.4)

The residues at these poles are given by

ρ0 ≡ Res(x0) = η
∏
µ

R+(iγµ), (3.5)

ρ1 ≡ Res(x1) = η
∏
µ

R+(iγµ + π/2r), (3.6)

ρ2 ≡ Res(x2) = η exp

(
−2ra+ − r

∑
µ

γµ

)∏
µ

R+(iγµ + ia+/2), (3.7)

ρ3 ≡ Res(x3) = η exp

(
−2ra+ − r

∑
µ

γµ

)∏
µ

R+(iγµ + ia+/2 + π/2r), (3.8)

where

η ≡ ρ/2R+(ia− + ia+/2), (3.9)

with

ρ ≡ lim
x→0

x

R+(x+ ia+/2)
= 1/2ir

∞∏
k=1

(1− exp(−2kra+))2, (3.10)

cf. (1.7). By evenness, the residues at x = −xn are then given by −ρn, n = 0, 1, 2, 3. Note that
all of these residues are invariant under permutations and an even number of sign changes of
γ0, . . . , γ7.

In accordance with [6, Section 4.3], the residues (3.5) and (3.6) are equal to minus the residues
of

V (γ;−x) =

7∏
µ=0

R+(x+ iγµ + ia−/2)

R+(2x− ia+/2)R+(2x− ia+/2 + ia−)
,

(cf. (1.11)) at x0 and x1, whereas the residues (3.7) and (3.8) should be multiplied by a factor

− exp

(
2ra− + 2ra+ + r

∑
µ

γµ

)
, (3.11)

to obtain the residues of V (γ;−x) at x2 and x3.
3

As announced, we have now specified Vb(γ;x) up to an arbitrary additive constant. Turning
to R(z), it can be written

R(z) =
3∑

n=1

Sn(z), (3.12)

3A similar relation between the residues of shift/additive terms is also known in the Lax operator side. However,
the corresponding statement in [18, (iii) in Section 4] is not literally correct, because of the disagreement of the
quasi-periodicity of the shift/additive terms. This problem can be restored by a certain gauge transformation, or
one should take into account multiplicative factors like (3.11).
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where the summands are given by

S1(z) ≡ U(z)F(qz)G(k/z)
[
k/q2z2

]
/G(z), (3.13)

S2(z) ≡ U(k/qz)F(z)G(qz)
[
k/z2

]
/G(k/qz), (3.14)

S3(z) ≡ −F(z)F(qz)F(z)
[
k/z2

][
k/qz2

][
k/q2z2

]
/G(z)G(k/qz), (3.15)

with U(z) given by (1.17) and G(z) by

G(z) ≡ z[z/ξ1][z/ξ2].

Furthermore, we have

ξ1ξ2 = `, (3.16)

where

k2`2 = q
4∏
j=1

ajbj . (3.17)

(Just as k, the parameter ` stems from the extended affine Weyl group of E8, cf. [3].)
It remains to define the function F(z). This is of the previous form (1.16), but with ‘evolved’

parameters C, λ, and k. The latter is simply given by

k = k/q, (3.18)

so we have

F(z) = Cz
[
z/λ

][
k/qzλ

]
.

The evolution of C and λ is fixed by requiring

F(ξj)F(ξj)
[
k/ξ2j

][
k/qξ2j

]
= G(k/ξj)G(k/qξj)U(ξj), j = 1, 2, (3.19)

cf. [18, Proposition 4.1]. In view of (3.13) and (3.15), this amounts to requiring that R(z) have
no poles at the zeros z = ξ1, ξ2, of G(z).

The crux of the simple k-evolution (3.18) is that it guarantees that the function R(z) is in
fact holomorphic in the finite plane C∗. This implies that

W (x) ≡ R(exp(2ir(x+ ia))) (3.20)

is an entire π/r-periodic function, a feature that we shall return to in Section 4.
We proceed to calculate the summands

Tn(x) ≡ Sn(exp(2ir(x+ ia))), n = 1, 2, 3,

of W (x) in terms of R+(x), using the above reparametrization (3.2), and also setting

ξi = q exp(−2rφi), i = 1, 2, λ = q exp(−2rγ8).

We have already calculated the factors containing the 8 parameters in the terms Tn(x).
Specifically, the factor coming from U(z) is given by (1.22), and from this we also obtain

U(pq/z) =

7∏
µ=0

R+(x+ iγµ + ia−/2).
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To continue, we determine the remaining factors, using from now on the notation

f(x± y) := f(x+ y)f(x− y),

to shorten the resulting formulas

F(z) = C exp(2ir(x+ ia))R+(x± iγ8 − ia−/2),

F(qz) = C exp(2ir(x+ ia)) exp(−2ra−)R+(x± iγ8 + ia−/2),

F(z) = C exp(2ir(x+ ia))R+(x± (iγ8 + ia−/2)), (3.21)

G(z) = exp(2ir(x+ ia))

2∏
j=1

R+(x− iφj − ia−/2),

G(qz) = exp(2ir(x+ ia)) exp(−2ra−)
2∏
j=1

R+(x− iφj + ia−/2),

G(pq/z) = exp(−2ir(x+ ia)) exp(−2ra+ − 2ra−)

2∏
j=1

R+(x+ iφj + ia−/2),

G
(
pq2/z

)
= exp(−2ir(x+ ia)) exp(−2ra+ − 4ra−)

2∏
j=1

R+(x+ iφj − ia−/2).

Using also (2.1) and (2.2), we finally get (recall R+(x) is even)

T1(x) = Ce−2irxe−ra+e−5ra−R+(x± iγ8 + ia−/2)R+(2x+ ia+/2 + ia−)

×
7∏

µ=0

R+(x− iγµ − ia−/2)
2∏
j=1

R+(x+ iφj − ia−/2)

R+(x− iφj − ia−/2)
,

T2(x) = T1(−x),

T3(x) = −C2Ce6irxe−ra+e−3ra−R+(x± iγ8 ± ia−/2)R+(x± (iγ8 − ia−/2))

×R+(2x+ ia+/2)R+(2x+ ia+/2± ia−)/

2∏
j=1

R+(x± (iφj + ia−/2)).

Next, we calculate the denominator function (cf. (3.1)),

D(x) = P (exp(2ir(x+ ia))),

by using the above factors

D(x) = Ce6irxe−ra+e−ra−R+(x± (iγ8 + ia−/2))

×R+(2x+ ia+/2)R+(2x+ ia+/2± ia−). (3.22)

Hence we obtain

−W (x)/D(x) = E(x) + E(−x) + Ve(x) =: Z(x), (3.23)

where

E(x) ≡ −e−8irxe−4ra−
R+(x− iγ8 + ia−/2)

R+(x− iγ8 − ia−/2)

7∏
µ=0

R+(x− iγµ − ia−/2)

R+(2x+ ia+/2)R+(2x+ ia+/2− ia−)
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×
2∏
j=1

R+(x+ iφj − ia−/2)

R+(x− iφj − ia−/2)
, (3.24)

Ve(x) ≡ CCe−2ra−
R+(x± i(γ8 − a−/2))R+(x± i(γ8 − a−/2))∏2

j=1R+(x± i(φj + a−/2))
. (3.25)

We proceed to discuss these functions. The ‘extra’ summand Ve(x) of the additive part Z(x)
is manifestly an even elliptic function. Moreover, we have

E(x+ ia+/2)

E(x− ia+/2)
= exp(8ra+) exp(2ra−)

7∏
µ=0

exp(−2rγµ − ra−)

exp(4ra+) exp(−4ra−)

2∏
j=1

exp(4rφj)

= exp(4ra+) exp(−2ra−)
7∏

µ=0

exp(−2rγµ)
2∏
j=1

exp(4rφj). (3.26)

Now with our reparametrizations, (3.17) yields

`2 = exp(4ra+) exp(−10ra−)

7∏
µ=0

exp(−2rγµ),

and then (3.16) gives

exp(−2r(φ1 + φ2)) = exp(2ra+) exp(−ra−)
7∏

µ=0

exp(−rγµ). (3.27)

Using this in (3.26), we deduce that E(x) is also elliptic.
Next, we study the remaining poles in the summands of Z(x). By evenness, the poles coming

from the denominator factors R+(2x+ia+/2) and R+(2x−ia+/2) cancel. The remaining factors,
however, do give rise to poles. In particular, for generic γ8 we get poles depending on γ8.

We proceed to consider the special γ8-choice (3.3). We already know from Section 2 that for
that choice the shift part amounts to that of a gauge-transformed van Diejen operator A+(γ̃;x),
with γ̃ defined by

γ̃µ ≡ γµ, µ = 0, . . . , 6, γ̃7 ≡ γ7 − a−.

Hence we should next compare the pole residues of Z(x) and those of the additive part Vb(γ̃;x)
of A+(γ̃;x). Also, by ellipticity and evenness we need only study the residues at x = −xn,
n = 0, 1, 2, 3.

For x = −x0 = ia−/2, the summand E(x) (3.24) with γ8 = γ7 has a residue

−ηR+(iγ7 − ia−)
6∏

µ=0

R+(iγµ),

cf. (3.9). Thus it equals the residue at x = −x0 of Vb(γ̃;x), cf. (3.5). Likewise, using the
π/r-periodicity of R+(x), we see that the residues at x = −x1 coincide.

Let us next obtain the E(x)-residue for x = −x2 = ia−/2− ia+/2. In this case (3.24) yields
the residue

−e−4ra+ρ
[
2e−2ra−R+(ia− + ia+/2)

]−1
R+(−ia+/2− iγ7 + ia−)

6∏
µ=0

R+(−ia+/2− iγµ)
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×
2∏
j=1

R+(−ia+/2 + iφj)

R+(−ia+/2− iφj)
,

where we have used the R+-A∆E (1.8) and (3.10). Using (1.8) once more, this can be rewritten
as

−e−4ra+e2ra−ηR+(iγ7 − ia− + ia+/2)
6∏

µ=0

R+(iγµ + ia+/2) · exp(−2r(φ1 + φ2)).

When we now use (3.27), this becomes

−e−2ra+era−ηR+(iγ7 − ia− + ia+/2)
6∏

µ=0

R+(iγµ + ia+/2)
7∏

µ=0

exp(−rγµ).

Comparing this to (3.7), we see that it equals the residue at x = −x2 of Vb(γ̃;x).
Basically the same calculation shows that the residues of E(x) and Vb(γ̃;x) at x = −x3 are

also equal. Therefore, the function

Vb(γ̃;x)− Z(x)

has no poles, so by ellipticity it equals a constant, which we shall denote by E. This con-
stant E, however, has a nontrivial dependence on the variable φ1, which can be freely chosen
(after which φ2 is determined by (3.27)). It can be expected that when φ1 ranges over C, the
corresponding E-values range over C as well. We shall study this further in Section 4.

The upshot is that we have furnished the details of the correspondence between van Diejen’s
operator A+(γ̃;x) and the Lax formulation for Sakai’s elliptic Painlevé equation.4 In the next
section we add some further details and insights on this correspondence.

4 Some supplements

To begin with, let us confirm that Z(x) (3.23) has no poles for ±x equal to iφ1 + ia−/2− ia+/2
and iφ2 +ia−/2− ia+/2 modulo the elliptic lattice Λ. To this end we recall that the quantities C
and γ8 are defined such that the function F(z) (3.21) ensures the absence of poles of R(z) at
z = ξn = q exp(−2rφn), n = 1, 2, cf. (3.19). Now P (z) has no zeros at these two z-values
(generically), so R(z)/P (z) has no poles there either. Recalling z = exp(2ir(x + ia)), we see
that the evolution requirement amounts to insisting that poles for

x = ia−/2− ia+/2 + iφn, n = 1, 2,

be absent in Z(x). By evenness and ellipticity, it is then clear that Z(x) indeed has no poles
for ±x equal to iφn + ia−/2− ia+/2 modulo Λ. As a corollary, it follows from (3.22) and (3.23)
that W (x) (3.20) is indeed an entire π/r-periodic function.

We proceed to study the evolution requirement in more detail. From (3.24) and (3.25) we
see that for our variables and parameters it amounts to requiring

CR+(iφn + ia−/2− ia+/2± i(γ8 − a−/2)) = cn, (4.1)

where

cn ≡ C−1 exp(8rφn − 4ra+ + 2ra−)R+(iφ1 + iφ2 − ia+/2 + ia−/2± ia−/2)

4The generalization of the correspondence to the elliptic difference n-particle systems is an important future
problem.
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×

7∏
µ=0

R+(iφn − iγµ − ia+/2)

R+(iφn ± iγ8 − ia+/2)
, n = 1, 2. (4.2)

We can solve the requirement (4.1) (more or less) explicitly by making use of the family of
even elliptic functions

E(d;x) ≡ R+(x± i(d+ a+/2))

R+(x± ia+/2)
, (4.3)

as follows. First, we note that we can rewrite (4.1) as

CE(ψ; iαn) =
cn

R+(iαn ± ia+/2)
, n = 1, 2, (4.4)

where

αn ≡ φn + a−/2− a+/2, n = 1, 2, (4.5)

and

ψ ≡ γ8 − a−/2− a+/2.

Consider now the function

E(x) ≡ E(α2;x)

R+(iα1 ± i(α2 + a+/2))
c1 +

E(α1;x)

R+(iα2 ± i(α1 + a+/2))
c2. (4.6)

By construction, it satisfies

E(iαn) =
cn

R+(iαn ± ia+/2)
, n = 1, 2.

Now E(x) is an even elliptic function with only two poles (at x = 0) in a period parallelogram,
so it must be of the form

E(x) = C
R+(x± i(ψ + a+/2))

R+(x± ia+/2)
,

which determines the quantities C and ψ. As a consequence, the quantities C and

γ8 = ψ + a−/2 + a+/2,

yield a solution to (4.1), and we may substitute

CR+(x± i(γ8 − a−/2))→ E(x)R+(x± ia+/2), (4.7)

in (3.25), with E(x) defined by (4.6), (4.5), (4.3) and (4.2). This yields Ve(x) in an explicit
form, in which the variables C, C, and λ are no longer present. Correspondingly, rewritten in

the multiplicative notation, we obtain the following expression for R(z) =
3∑
i=1

Si(z) where the

function F(z) is eliminated

R(z)

F(z)F(qz)
=

[
k
z2

]
G(qz)U

(
k
qz

)
G
(
k
qz

)
F(qz)

+

[
k
qz2

]
G
(
k
z

)
U(z)

G(z)F(z)
+

2∑
i=1

k
[
k
`

][
k
z2

][
k

q2z2

][
k
qz2

]
U(ξi)

ξ2i
[ ξ2i
`

][ ξi
z

][
k
ξiqz

]
F(ξi)

.
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We continue by adding some comments concerning genericity and questions of existence/uni-
queness. We begin by noting that there are tacit genericity assumptions throughout the above.
This is already the case for the van Diejen operator A+(γ;x): For a fixed a+, we should require
that a− be such that

R+(ia−/2 + ia+/2) 6= 0, R+(ia− + ia+/2) 6= 0,

to ensure that the poles of V (γ;±x) and Vb(γ;x) are simple, and that our choice of the additive
constant in Vb(γ;x) is finite, cf. [9]. In particular, this says that a− should not be a multiple
of a+ (equivalently, q 6= pn with n ∈ N∗).

Let us next reconsider the evolution of C and λ with regard to genericity. Obviously we need
to require that C and λ be nonzero, just as the variables ξn and the parameters `, k, q, p, aj
and bj . The above explicit solution to (4.1) then implies that C and λ are nonzero as well, but
this solution is only well defined when we require

iφn ± iγ8 6= 0, n = 1, 2, mod Λ,

so that c1 and c2 are finite, cf. (4.2),

iφn + ia−/2− ia+/2 6= 0, n = 1, 2, mod Λ,

cf. (4.4)–(4.5), and

i(φ1 − φ2) 6= 0, i(φ1 + φ2 + a−) 6= 0, mod Λ, (4.8)

cf. (4.6).
Provided these requirements are satisfied, it is likely that the solution is also unique. Indeed,

assuming there are two solutions E1(x) 6= E2(x) of the above form, the difference would be an
even degree-two elliptic function with a double pole at the origin, which vanishes for x = iα1

and x = iα2. By (4.8) this implies that the zero sum given by (cf. (4.5))

i(φ1 + φ2 + a− − a+),

is not congruent to 0 mod Λ, in contradiction to ellipticity. (To be sure, it is conceivable that
there exists a second solution with a different structure.)

Finally, let us come back to Z(x), assuming from now on γ8 = γ7. As we have shown above,
in that case Z(x) amounts to Vb(γ̃;x)−E, where E is an unspecified constant depending on φ1.
We now detail the three summands of

Z(x) = E(x) + E(−x) + Ve(x), γ8 = γ7.

From (3.24) we get

E(x) = − exp(−8irx− 4ra−)

R+(x− iγ7 + ia−/2)
6∏

µ=0
R+(x− iγµ − ia−/2)

R+(2x+ ia+/2)R+(2x+ ia+/2− ia−)

×
2∏
j=1

R+(x+ iφj − ia−/2)

R+(x− iφj − ia−/2)
,

whereas (3.25) combined with (4.1)–(4.7) yields

Ve(x) =
R+(x± i(γ7 − a−/2))
2∏
j=1

R+(x± i(φj + a−/2))
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×
(
d1

R+(x± i(α2 + a+/2))

R+(iα1 ± i(α2 + a+/2))
+ d2

R+(x± i(α1 + a+/2))

R+(iα2 ± i(α1 + a+/2))

)
,

with

dn ≡ exp(8rφn − 4ra+)R+

 i

2

7∑
µ=0

γµ − 3ia+/2 + ia− ± ia−/2



×

6∏
µ=0

R+(iφn − iγµ − ia+/2)

R+(iφn + iγ7 − ia+/2)
.

Here, we also used (cf. (3.27))

φ1 + φ2 = −a+ +
1

2
a− +

1

2

7∑
µ=0

γµ,

and for completeness, we repeat (4.5)

αn = φn + a−/2− a+/2, n = 1, 2.

It should be stressed that Z(x) as just obtained gives rise to a novel and quite surprising
representation for Vb(γ̃;x)− E. Taking the parameters r, a+, a− positive from now on and a−
not equal to a multiple of a+ (as in [9]), the function Vb(γ̃;x) is real-valued for real γµ’s and
real x. Taking also φ1, φ2 real, the same is true for Z(x), as is readily verified. Hence the
constant E is real. We can say more about its dependence on φ1, as follows.

Assuming

2iγ7 /∈ Λ,

we can take x equal to

xs := −iγ7 + ia−/2− ia+/2.

The point is that this yields

E(−xs) = Ve(xs) = 0,

so that

Z(xs) = − exp(−8rγ7 − 4ra+)

6∏
µ=0

R+(iγ7 + iγµ + ia+/2)

R+(2iγ7 + ia+/2)

×
2∏
j=1

R+(iγ7 − iφj + ia+/2)

R+(iγ7 + iφj + ia+/2)
. (4.9)

Now Vb(γ̃;xs) is a real number not depending on φ1, so we can conclude from (4.9) that E varies
over all of R as φ1 varies over R. Indeed, for φ1 = −γ7 the denominator in (4.9) vanishes, and
for φ1 = γ7 the numerator vanishes, so by a continuity argument our conclusion readily follows.

As another salient fact, we recall from [9] that Vb(γ̃;x) vanishes when we choose

γ0 = 0, γ1 = iπ/2r, γ2 = a+/2, γ3 = a+/2 + iπ/2r.

Therefore Z(x) does not depend on x for this γ-choice, entailing Z(x) = Z(xs) = −E.
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