Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 006, 46 pages      arXiv:1301.5228      https://doi.org/10.3842/SIGMA.2020.006

Analytic Classification of Families of Linear Differential Systems Unfolding a Resonant Irregular Singularity

Martin Klimeš
Independent Researcher, Prague, Czech Republic

Received March 13, 2019, in final form December 21, 2019; Published online January 23, 2020

Abstract
We give a complete classification of analytic equivalence of germs of parametric families of systems of complex linear differential equations unfolding a generic resonant singularity of Poincaré rank 1 in dimension $n = 2$ whose leading matrix is a Jordan bloc. The moduli space of analytic equivalence classes is described in terms of a tuple of formal invariants and a single analytic invariant obtained from the trace of monodromy, and analytic normal forms are given. We also explain the underlying phenomena of confluence of two simple singularities and of a turning point, the associated Stokes geometry, and the change of order of Borel summability of formal solutions in dependence on a complex parameter.

Key words: linear differential equations; confluence of singularities; Stokes phenomenon; monodromy; analytic classification; moduli space; biconfluent hypergeometric equation.

pdf (1400 kb)   tex (2011 kb)  

References

  1. Babbitt D.G., Varadarajan V.S., Local moduli for meromorphic differential equations, Astérisque 169-170 (1989), 217 pages.
  2. Balser W., Formal power series and linear systems of meromorphic ordinary differential equations, Universitext, Springer-Verlag, New York, 2000.
  3. Balser W., Jurkat W.B., Lutz D.A., Birkhoff invariants and Stokes' multipliers for meromorphic linear differential equations, J. Math. Anal. Appl. 71 (1979), 48-94.
  4. Balser W., Jurkat W.B., Lutz D.A., A general theory of invariants for meromorphic differential equations. I. Formal invariants, Funkcial. Ekvac. 22 (1979), 197-221.
  5. Balser W., Jurkat W.B., Lutz D.A., A general theory of invariants for meromorphic differential equations. II. Proper invariants, Funkcial. Ekvac. 22 (1979), 257-283.
  6. Benzinger H.E., Plane autonomous systems with rational vector fields, Trans. Amer. Math. Soc. 326 (1991), 465-483.
  7. Bolibrukh A.A., On sufficient conditions for the positive solvability of the Riemann-Hilbert problem, Math. Notes 51 (1992), 110-117.
  8. Bolibrukh A.A., On analytic transformation to Birkhoff standard form, Math. Dokl. 49 (1994), 150-153.
  9. Branner B., Dias K., Classification of complex polynomial vector fields in one complex variable, J. Difference Equ. Appl. 16 (2010), 463-517, arXiv:0905.2293.
  10. Coddington E.A., Levinson N., Theory of ordinary differential equations, McGraw-Hill Book Company, Inc., New York - Toronto - London, 1955.
  11. Douady A., Estrada F., Sentenac P., Champs de vecteurs polynômiaux sur ${\mathbb C}$, unpublished manuscript, 2005.
  12. Duval A., Biconfluence et groupe de Galois, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (1991), 211-223.
  13. Glutsuk A.A., Stokes operators via limit monodromy of generic perturbation, J. Dynam. Control Systems 5 (1999), 101-135.
  14. Glutsyuk A.A., Resonant confluence of singular points and Stokes phenomena, J. Dynam. Control Systems 10 (2004), 253-302.
  15. Hurtubise J., Lambert C., Rousseau C., Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank $k$, Mosc. Math. J. 14 (2014), 309-338.
  16. Hurtubise J., Rousseau C., Moduli space for generic unfolded differential linear systems, Adv. Math. 307 (2017), 1268-1323, arXiv:1508.06616.
  17. Ilyashenko Yu., Realization of irreducible monodromy by Fuchsian systems and reduction to the Birkhoff standard form (by Andrey Bolibrukh), in Differential Equations and Quantum Groups, IRMA Lect. Math. Theor. Phys., Vol. 9, Eur. Math. Soc., Zürich, 2007, 1-8.
  18. Ilyashenko Yu., Yakovenko S., Lectures on analytic differential equations, Graduate Studies in Mathematics, Vol. 86, Amer. Math. Soc., Providence, RI, 2008.
  19. Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
  20. Jurkat W., Lutz D., Peyerimhoff A., Birkhoff invariants and effective calcualtions for meromorphic linear differential equations. I, J. Math. Anal. Appl. 53 (1976), 438-470.
  21. Jurkat W.B., Lutz D.A., Peyerimhoff A., Birkhoff invariants and effective calculations for meromorphic linear differential equations. II, Houston J. Math. 2 (1976), 207-238.
  22. Kawai T., Takei Y., Algebraic analysis of singular perturbation theory, Translations of Mathematical Monographs, Vol. 227, Amer. Math. Soc., Providence, RI, 2005.
  23. Klimeš M., Wild monodromy of the fifth Painlevé equation and its action on the wild character variety: approach of confluence, arXiv:1609.05185.
  24. Klimeš M., Rousseau C., Generic $2$-parameter perturbations of parabolic singular points of vector fields in $\mathbb{C}$, Conform. Geom. Dyn. 22 (2018), 141-184, arXiv:1710.00883.
  25. Kohno M., Global analysis in linear differential equations, Mathematics and its Applications, Vol. 471, Kluwer Academic Publishers, Dordrecht, 1999.
  26. Kostov V.P., Normal forms of unfoldings of non-Fuchsian systems, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), 623-628.
  27. Lambert C., Rousseau C., The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation, J. Differential Equations 244 (2008), 2641-2664, arXiv:0706.1773.
  28. Lambert C., Rousseau C., Complete system of analytic invariants for unfolded differential linear systems with an irregular singularity of Poincaré rank 1, Mosc. Math. J. 12 (2012), 77-138, arXiv:1105.2269.
  29. Muciño Raymundo J., Valero-Valdés C., Bifurcations of meromorphic vector fields on the Riemann sphere, Ergodic Theory Dynam. Systems 15 (1995), 1211-1222.
  30. Mullin F.E., On the regular perturbation of the subdominant solution to second order linear ordinary differential equations with polynomial coefficients, Funkcial. Ekvac. 11 (1968), 1-38.
  31. Parise L., Confluence de singularités régulieres d'équations différentielles en une singularité irréguliere. Modèle de Garnier, Ph.D. Thesis, IRMA Strasbourg, 2001, available at http://www-irma.u-strasbg.fr/annexes/publications/pdf/01020.pdf.
  32. Ramis J.-P., Confluence et résurgence, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 703-716.
  33. Sabbah C., Isomonodromic deformations and Frobenius manifolds. An introduction, Universitext, Springer-Verlag London, Ltd., London, EDP Sciences, Les Ulis, 2007.
  34. Schäfke R., Confluence of several regular singular points into an irregular singular one, J. Dynam. Control Systems 4 (1998), 401-424.
  35. Sibuya Y., Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland Mathematics Studies, Vol. 18, North-Holland Publishing Co., Amsterdam - Oxford, 1975.
  36. Sibuya Y., Linear differential equations in the complex domain: problems of analytic continuation, Translations of Mathematical Monographs, Vol. 82, Amer. Math. Soc., Providence, RI, 1990.
  37. Tahar G., Counting saddle connections in flat surfaces with poles of higher order, Geom. Dedicata 196 (2018), 145-186, arXiv:1606.03705.
  38. Tomasini J., Topological enumeration of complex polynomial vector fields, Ergodic Theory Dynam. Systems 35 (2015), 1315-1344, arXiv:1307.3850.
  39. Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, Vol. 14, John Wiley & Sons, Inc., New York - London - Sydney, 1965.
  40. Zhang C., Confluence et phénomène de Stokes, J. Math. Sci. Univ. Tokyo 3 (1996), 91-107.

Previous article  Next article  Contents of Volume 16 (2020)