Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 16 (2020), 005, 5 pages      arXiv:1808.02209      https://doi.org/10.3842/SIGMA.2020.005

A Constraint on Chern Classes of Strictly Pseudoconvex CR Manifolds

Yuya Takeuchi
Department of Mathematics, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

Received July 25, 2019, in final form January 18, 2020; Published online January 21, 2020

Abstract
This short paper gives a constraint on Chern classes of closed strictly pseudoconvex CR manifolds (or equivalently, closed holomorphically fillable contact manifolds) of dimension at least five. We also see that our result is ''optimal'' through some examples.

Key words: strictly pseudoconvex CR manifold; holomorphically fillable; Chern class.

pdf (291 kb)   tex (11 kb)  

References

  1. Boutet de Monvel L., Intégration des équations de Cauchy-Riemann induites formelles, in Séminaire Goulaouic-Lions-Schwartz 1974-1975; Équations aux derivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975, Exp. No. 9, 14 pages.
  2. Bungart L., Vanishing cup products on pseudoconvex CR manifolds, in The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemp. Math., Vol. 137, Amer. Math. Soc., Providence, RI, 1992, 105-111.
  3. Cao J., Chang S.-C., Pseudo-Einstein and $Q$-flat metrics with eigenvalue estimates on CR-hypersurfaces, Indiana Univ. Math. J. 56 (2007), 2839-2857, arXiv:math.DG/0609312.
  4. Case J.S., Gover A.R., The $P'$-operator, the $Q'$-curvature, and the CR tractor calculus, Ann. Scuola Norm. Sup. Pisa Cl. Sci., to appear, arXiv:1709.08057.
  5. Etnyre J.B., Ozbagci B., Invariants of contact structures from open books, Trans. Amer. Math. Soc. 360 (2008), 3133-3151, arXiv:math.GT/0605441.
  6. Harvey F.R., Lawson Jr. H.B., On boundaries of complex analytic varieties. I, Ann. of Math. 102 (1975), 223-290.
  7. Kollár J., Links of complex analytic singularities, in Surveys in Differential Geometry. Geometry and Topology, Surv. Differ. Geom., Vol. 18, Int. Press, Somerville, MA, 2013, 157-193, arXiv:1209.1754.
  8. Lempert L., Algebraic approximations in analytic geometry, Invent. Math. 121 (1995), 335-353.
  9. Marugame T., Renormalized Chern-Gauss-Bonnet formula for complete Kähler-Einstein metrics, Amer. J. Math. 138 (2016), 1067-1094, arXiv:1309.2766.
  10. Ohsawa T., A reduction theorem for cohomology groups of very strongly $q$-convex Kähler manifolds, Invent. Math. 63 (1981), 335-354.
  11. Ohsawa T., Addendum to: ''A reduction theorem for cohomology groups of very strongly $q$-convex Kähler manifolds'', Invent. Math. 66 (1982), 391-393.
  12. Popescu-Pampu P., On the cohomology rings of holomorphically fillable manifolds, in Singularities II, Contemp. Math., Vol. 475, Amer. Math. Soc., Providence, RI, 2008, 169-188, arXiv:0712.3484.

Previous article  Next article  Contents of Volume 16 (2020)