
SIGMA 5 (2009), 006, 4 pages arXiv:0901.2335
https://doi.org/10.3842/SIGMA.2009.006
Contribution to the Proceedings of the XVIIth International Colloquium on Integrable Systems and Quantum Symmetries
HeisenbergType Families in U_{q}(^sl_{2})
Alexander Zuevsky
MaxPlanck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
Received October 20, 2008, in final form January 13, 2009; Published online January 15, 2009
Abstract
Using the second Drinfeld formulation of the quantized universal enveloping algebra
U_{q}(^sl_{2}) we introduce a family of its Heisenbergtype elements which are endowed with a
deformed commutator and satisfy properties similar to
generators of a Heisenberg subalgebra.
Explicit expressions for new family of generators are found.
Key words:
quantized universal enveloping algebras; Heisenbergtype families.
pdf (171 kb)
ps (126 kb)
tex (8 kb)
References
 Drinfel'd V.G., A new realization of Yangians and quantized
affine algebras, Soviet Math. Dokl. 36 (1988), 212216.
 Enriquez B., Quantum principal commutative subalgebra in the nilpotent part of
U_{q}sl_{2} and lattice KdV variables, Comm. Math. Phys. 170
(1995), 197206, hepth/9402145.
 Frenkel I.B., Jing N.H., Vertex representations of quantum
affine algebras, Proc. Nat. Acad. Sci. USA 85 (1988), 93739377.
 Jimbo M., Miki K., Miwa T., Nakayashiki A.,
Correlation functions of the XXZ model for D < 1,
Phys. Let. A 168 (1992), 256263, hepth/9205055.
 Kac V.G., Infinitedimensional Lie algebras, 3rd ed.,
Cambridge University Press, Cambridge, 1990.
 Saveliev M.V., Zuevsky A.B., Quantum vertex
operators for the sineGordon model,
Internat. J. Modern Phys. A 15 (2000),
38773897.
 Zuevsky A., Heisenbergtype families of
U_{q}(^G), in preparation.

