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Abstract: -
The problem of variables separation in the linear stability equations, which govern the disturbance
behavior in viscous incompressible fluid flows, is considered. The so-called direct approach, in which
a form of the ’Ansatz’ for a solution with separated variables as well as a form of reduced ODEs are
postulated from the beginning, is applied. The results of application of the method are the new coordinate
systems and the most general forms of basic flows, which permit the postulated form of separation of
variables. Thus, the stability analysis of nonparallel unsteady flows is reduced to the eigenvalue problems
of ordinary differential equations. This method involves very complicated analytical calculations which
can be implemented only using symbolic manipulating programs. The resulting eigenvalue problems are
solved numerically with the help of the spectral collocation method based on Chebyshev polynomials. For
some classes of perturbations, the eigenvalue problems can be solved analytically. Those unique examples
of exact (explicit) solution of the nonparallel unsteady flow stability problems provide a very useful test
for numerical methods of solution of eigenvalue problems, and for methods used in the hydrodynamic
stability theory, in general.
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1 Introduction

Problems of hydrodynamic stability are of great
theoretical and practical interest, as evidenced by
the number of publications devoted to this sub-
ject. The linear stability theory (see, e.g., [1])
for a particular flow starts with a solution of the
equations of motion representing this basic flow.
One then considers this solution with a small per-
turbation superimposed. Substituting the per-
turbed solution into the equations of motion and
neglecting all terms that involve the square of the
perturbation amplitude yield the linear stability
equations which govern the behavior of the per-
turbation. The linearization provides a means of
allowing for the many different forms that the
disturbance can take. In the method of nor-
mal modes, small disturbances are resolved into
modes, which may be treated separately because
each satisfies the linear equations and there are
no interactions between different modes.

Thus, the mathematical problem of the de-
termination of stability of a given flow involves
deriving a set of perturbation equations obtained
from the Navier-Stokes equations by linearization
around this basic flow and finding a set of possi-
ble solutions which would permit splitting a per-

turbation into normal modes. For a steady-state
basic flow, normal modes depending on time ex-
ponentially, with a complex exponent λ, are per-
missable - the sign of the real part of λ indicates
whether the disturbance grows or decays in time.
If further separation of variables is possible, it
makes the stability problem amenable to the nor-
mal mode analysis in its common form when the
problem reduces to that of solving a set of ordi-
nary differential equations. It can be done, how-
ever, only for basic flows of specific forms - mostly
those are the parallel flows or their axial symmet-
ric counterparts.

For nonparallel basic flows, when the coeffi-
cients in the equations for disturbance flow are
dependent not only on the normal to the flow co-
ordinate but also on the other coordinates, the
corresponding operator does not separate unless
certain terms are ignored. If, in addition, the
basic flow is non-steady, this brings about great
difficulties in theoretical studies of the instability
since the normal modes containing an exponen-
tial time factor exp(λt) are not applicable here.
Therefore stability of viscous incompressible flows
developing both in space and time is a little stud-
ied topic in the theory of hydrodynamic stability.

All the above said shows that the method of
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separation of variables is of a fundamental impor-
tance for the hydrodynamic stability problems.
Till now, the method of separation of variables
has been used for stability analysis in an intuitive
way which makes it generally applicable only to
the stability problems of the steady-state parallel
flows.

Recently, the so-called direct approach to sep-
aration of variables in linear PDEs has been de-
veloped by a proper formalizing the features of
the notion of separation of variables (see, e.g.,
[2], [3]). This method involves very complicated
analytical calculations which can be implemented
only using symbolic manipulating programs. Till
recently, computer capabilities were insufficient
to apply this method to such complicated systems
as linear stability equations – only single equa-
tions of mathematical physics have been treated.
The first attempt of applying this method to the
linear stability problem has been done in Ref. [4].
The success has been achieved not only due to
the increase of computer capability but also at
the expense of modifying the method based on
physics of the problem. Solutions obtained has
been used in Ref. [5] to implement the stability
analysis of some viscous incompressible unsteady
nonparallel flows, exact solutions of the continu-
ity and Navier-Stokes equations in cylindrical co-
ordinates.

In this paper, we present both some earlier re-
sults and the results obtained by further develop-
ment of the stability analysis based on separation
of variables in the linearized equations for the flow
perturbations. Stability analysis of the three-
dimensional unsteady nonparallel flows includes
two stages. First, analytical calculations using
the symbolic manipulating Mathematica package
are made to determine classes of separable solu-
tions for basic flows and separable solutions of
the equations for perturbations – both in Carte-
sian and cylindrical coordinates. Next, the ODE
eigenvalue problems to which the original stabil-
ity problems reduce via separation of variables are
solved numerically with the help of the spectral
collocation method based on Chebyshev polyno-
mials. The results obtained show dependence of
the flow stability properties on the perturbation
wave numbers and parameters of the problems.
This includes neutral curves, perturbation spec-
tra, unstable perturbation modes and others.

In some cases, the eigenvalue problems can
be solved analytically. Those unique examples of
exact (even explicit) solution of the nonparallel
unsteady flow stability problems provide a very
useful test for numerical methods of solution of

eigenvalue problems, and for methods used in the
hydrodynamic stability theory, in general.

2 Variable separation using the
direct method

2.1 Formulation

The Navier-Stokes equations governing flows of
incompressible Newtonian fluids are

∂v̂

∂t
+(v̂∇) v̂ = −1

ρ
∇p̂+ ν∇2v̂ and ∇v̂ = 0, (1)

where ρ is the constant density and ν is the con-
stant kinematic viscosity of the fluid.

As usual in stability analysis, we split the ve-
locity and pressure fields (v̂x, v̂y, v̂z, p̂) into two
problems: the basic flow problem (Vx, Vy, Vz, P )
and a perturbation one (vx, vy, vz, p),

v̂x = Vx+vx, v̂y = Vy+vy, v̂z = Vz+vz, p̂ = P+p
(2)

Introducing (2) into the Navier-Stokes equa-
tions (1) and neglecting all terms that involve
the square of the perturbation amplitude, while
imposing the requirement that the basic flow
variables (Vx, Vy, Vz, P ) themselves satisfy the
Navier-Stokes equations, one arrives at the fol-
lowing set of linear stability equations in the
Cartesian coordinates:

∂vx
∂t

+ Vx
∂vx
∂x

+ vx
∂Vx

∂x
+ Vy

∂vx
∂y

+ vy
∂Vx

∂y
+ Vz

∂vx
∂z

+

vz
∂Vx

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2vx
∂x2

+
∂2vx
∂y2

+
∂2vx
∂z2

)
,

∂vy
∂t

+ Vx
∂vy
∂x

+ vx
∂Vy

∂x
+ Vy

∂vy
∂y

+ vy
∂Vy

∂y
+ Vz

∂vy
∂z

+

vz
∂Vy

∂z
= −1

ρ

∂p

∂y
+ ν

(
∂2vy
∂x2

+
∂2vy
∂y2

+
∂2vy
∂z2

)
,

∂vz
∂t

+ Vx
∂vz
∂x

+ vx
∂Vz

∂x
+ Vy

∂vz
∂y

+ vy
∂Vz

∂y
+ Vz

∂vz
∂z

+

vz
∂Vz

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2vz
∂x2

+
∂2vz
∂y2

+
∂2vz
∂z2

)
,

∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0, (3)

2.2 Outline of the direct method

Let us introduce a new coordinate system t, ξ =
ξ(t, x), η = η(t, y), γ = γ(t, z)

We choose the Ansatz for a solution u =
(vx, vy, vz) and p to be found

u = T (t) exp(aξ + sγ +mS(t))f(η),

p = T1(t) exp(aξ + sγ +mS(t))k(η) (4)
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where f = (h, f, g) and functions T (t), T1(t),
S(t), ξ(t, x), η(t, y), γ(t, z) are not fixed a pri-
ori but chosen in such a way that inserting the
expressions (4) into system of PDEs (3) yields a
system of three second-order and one first order
ordinary differential equations for four functions
h(η), f(η), g(η), k(η). To get constraints on func-
tions T , T1, S, ξ, η, γ we formalize a reduction
procedure as follows.

First, we postulate the form of the resulting
system of ordinary differential equations as fol-
lows

h′′(η) = U11g
′(η) + U12h

′(η) + U13k
′(η)+

U14f(η) + U15g(η) + U16h(η) + U17k(η),

f ′′(η) = U21g
′(η) + U22h

′(η) + U23k
′(η)+

U24f(η) + U25g(η) + U26h(η) + U27k(η),

g′′(η) = U31g
′(η) + U32h

′(η) + U33k
′(η)+ (5)

+ U34f(η)U35g(η) + U36h(η) + U37k(η),

f ′(η) = U41f(η) + U42g(η) + U43h(η) + U44k(η).

Here Uij are second order polynomials with re-
spect to spectral parameters a, s,m with coeffi-
cients, which are some smooth functions on η and
should be determined on the next steps of the al-
gorithm. Next, we insert the expressions (4) into
(3) which yields a system of PDEs containing the
functions ξ, η, γ and their first- and second-order
partial derivatives, and the functions f(η), g(η),
k(η) and their derivatives. Further we replace the
derivatives h′′(η), f ′′(η), g′′(η), f ′(η) by the cor-
responding expressions from the right-hand sides
of (5).

Now we regard h′(η), g′(η), k′(η), h(η), f(η),
g(η), k(η) as the new independent variables. As
the functions ξ(x, t), η(y, t), γ(z, t), T (t), T1(t),
S(t), basic flows Vx, Vy, Vz and coefficients of the
polynomials Uij (which are functions of η) are in-
dependent on these variables, we can require that
the obtained equality is transformed into identity
under arbitrary h′(η), g′(η), k′(η), h(η), f(η),
g(η), k(η). In other words, we should split the
equality with respect to these variables. After
splitting we get an overdetermined system of non-
linear partial differential equations for unknown
functions ξ(x, t), η(y, t), γ(z, t), T (t), T1(t), S(t),
basic flows Vx, Vy, Vz and coefficients of the poly-
nomials Uij . At the last step we solve the above
system to get an exhaustive description of coordi-
nate systems providing separability of equations
(3), as well as all possible basic flows Vx, Vy, Vz

such that the system (3) is solvable by the method
of separation of variables.

Thus, the problem of variable separation in
equation (3) reduces to integrating the overde-

termined system of PDEs for unknown functions
ξ(x, t), η(y, t), γ(z, t), T (t), T1(t), S(t), basic
flows Vx, Vy, Vz and coefficients of the polynomials
Uij . This have been done with the aid of Mathe-
matica package.

2.3 Results for equations in Cartesian
coordinates

The most general form of the basic flow is:

Vx = νA(η)T (t)− c′1(t) + xT ′(t)

T (t)
,

Vy = νB(η)T (t)− c′2(t) + yT ′(t)

T (t)
,

Vz = νC(η)T (t)− c′3(t) + zT ′(t)

T (t)
,

The forms of the perturbations vx, vy, vz and p
are:

u = T (t) exp

(
aξ + sγ +m

∫
T (t)2dt

)
f(η),

p = ρ T (t)2 exp

(
aξ + sγ +m

∫
T (t)2dt

)
k(η),

where ξ = T (t)x + c1(t), η = T (t)y + c2(t), γ =
T (t)z + c3(t).

The equations with separated variables are

(m− a2ν − s2ν + aνA(η) + sνC(η))h(η)+

ak(η) + ν(f(η)A′(η) +B(η)h′(η)− h′′(η)) = 0,

f(η)(m− a2ν − s2ν + aνA(η) + sνC(η)+

νB′(η)) + νB(η)f ′(η) + k′(η)− νf ′′(η) = 0,

(m− a2ν − s2ν + aνA(η) + sνC(η))g(η)+

sk(η) + ν(f(η)C ′(η) +B(η)g′(η)− g′′(η)) = 0,

sg(η) + ah(η) + f ′(η) = 0. (6)

The restrictions on the forms of the basic
flows following from the requirement that they
themselves satisfy the Navier-Stokes equations
lead to the two following cases:

Case I:

ξ =
1√
t
x+c1(t); η =

1√
t
y+c2(t); γ =

1√
t
z+c3(t).

Vx =
x

2t
+ νA(η)

1√
t
− c′1(t)

√
t,

Vy = −y

t
− 1√

t

(
tc′2(t) +

3

2
c2(t)

)
,

Vz =
z

2t
+ νC(η)

1√
t
− c′3(t)

√
t, (7)
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and the functions A(x) and C(x) satisfy the equa-
tions

3A′(η) + 3ηA′′(η) + 2νA′′′(η) = 0, (8)

3C ′(η) + 3ηC ′′(η) + 2νC ′′′(η) = 0. (9)

which can be solved in terms of the error func-
tions and the generalized hypergeometric func-
tions. The separation Ansatz takes the form

u = tseaξ+mγf(η), p = ρts−1/2eaξ+mγπ(η). (10)

For the Case II we have ξ = x + c1(t); η = y +
c2(t); γ = z + c3(t); Vx = A1η

2 + A2η − c′1(t),
Vy = −c′2(t), Vz = C1η

2 + C2η − c′3(t) and the
separation Ansatz is

u = eaξ+sγ+mtf(η), p = ρeaξ+sγ+mtπ(η).

2.4 Results for equations in cylindrical
coordinates

The Navier-Stokes equations are written in cylin-
drical coordinates (r, φ, z) and then the velocity
and pressure fields v̂r, v̂φ, v̂z, p̂ are splitted into
the basic flow and perturbation parts

v̂r = Vr+vr, v̂φ = Vφ+vφ, v̂z = Vz+vz, p̂ = P+p
(11)

where Vr, Vφ, Vz, P are the basic flow fields and
vr, vφ, vz, p are the perturbations.

Application of the direct method defines the
forms of the basic flows allowing separation of
variables in the stability equations as well as the
solutions of the stability equations with separated
variables.

The most general form of the basic flow is:

Vz = A(ξ)T (t)− c′(t) + zT ′(t)

T (t)
,

Vr = B(ξ)T (t)− r
T ′(t)

T (t)
, Vφ = C(ξ)T (t), (12)

where ξ = T (t)r, η = T (t)z + c(t).
The forms of the perturbations u =

(vr, vφ, vz) and p and with the trial functions
f = (f, g, h) and π we have:

u = T (t) exp

(
aη +mφ+ s

∫
T (t)2dt

)
f(ξ),

p = ρT (t)2 exp

(
aη +mφ+ s

∫
T (t)2dt

)
π(ξ).

(13)

The restrictions on the forms of the basic
flows following from the requirement that they
satisfy Navier-Stokes equations lead to the two
cases similar to those obtained for equations in
Cartesian coordinates.

3 Stability properties of some
flows

3.1 Basic flow

Considering the class of solutions in Cartesian co-
ordinates identified in Section 2 as Case I, we will
specify the solutions by setting c1(t) = c2(t) =
c3(t) = 0 but will use a possibility to enrich the
solutions by a shift of the time variable. Making
change of variables t = t′ − 1/b, where b is a con-
stant, and omitting primes in what follows, we
will have the solution of the Navier-Stokes equa-
tions in Cartesian coordinates in the form

Vx =
1√

1− bt

(
−bξ

2
+ νA(η)

)
, Vy =

bη√
1− bt

,

Vz =
1√

1− bt

(
−bζ

2
+ νC(η)

)
,

P

ρ
=

1

1− bt
×

×
(
b2

8

(
ξ2 + ζ2 − 8η2

)
− 2ν2 (A3ξ + C3ζ)

)
,

where

ξ =
x√

1− bt
, η =

y√
1− bt

, ζ =
z√

1− bt
(14)

and b can be both positive and negative. The
functions A(η) and C(η) are given in terms of
the error erf(z) and generalized hypergeometric

2F2(z) functions. The perturbations (10) must
be correspondingly specified.

The above formulas remain valid if we intro-
duce the nondimensional variables, with the time
scale 1/|b| and the correspondingly defined veloc-
ity scale. In the dimensionless equations (we will
retain the same notation for the nondimensional
variables), the parameter b takes one of the two
values: b = 1 or b = −1, and ν is replaced by
1/Re where Re is the Reynolds number. (if we
mark the dimensional variables with stars, the
Reynolds number will be Re = L∗2|b∗|/ν∗ where
L∗ is the length scale.)

We will consider the solution for the case of
b = −1 which allows interpretations correspond-
ing to unsteady flows near stretching (imperme-
able or permeable) surfaces or the flows that
develop within a channel possessing permeable,
moving walls. It is worth remarking that the
considered flows are essentially nonparallel – the
flow fields include all three velocity components
dependent on all coordinates.

There exists a class of solutions of the Navier-
Stokes equations in cylindrical coordinates, which
is similar in many features to the class of solutions
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in Cartesian coordinates considered above. The
basic flow solution in cylindrical coordinates per-
mits interpretations similar to those considered
above for the solution in Cartesian coordinates.
However, the cylindrical geometry and presence
of the additional free parameters allow one to find
more problem formulations and enrich the prob-
lem definitions. The basic flow might be again
an unsteady axially symmetrical stagnation-point
type flow, with the flow velocity decreasing with
time as (1 + t)−1, but, as distinct from the flows
considered in the previous section, here fluid flows
radially from infinity approaching the axis and
spreading along it. The basic flow might also be
an unsteady flow inside an expanding stretching
cylinder, which may also rotate, and there is an
injection of fluid through the porous pipe surface.

3.2 Criterion for stability

We choose as a criterion for stability that the ra-
tio of the magnitude of a perturbation to that of
a basic flow decreases with time, which for the
solutions leads to

ℜ
(
s+

1

2

)
< 0 or ℜ(s) < −1

2
(15)

where ℜ(s) denotes a real part of the eigenvalue
s (the imaginary part ℑ(s), if nonzero, deter-
mines the oscillation frequency). In particular,
for the decelerating flow (b = −1) the meaning
of instability implies that even any disturbance is
damped (ℜ(s) < 0 for the velocity perturbations
and ℜ(s) < 1/2 for the pressure perturbations)
yet it may dominate the decelerating flow after
sufficient time if ℜ(s) > −1/2. It is also seen
that the condition (15) unifies the stability crite-
rion for the velocity and pressure perturbations.

3.3 Solution of the eigenvalue prob-
lems

The eigenvalue problems were solved numerically
with the help of the spectral collocation method
based on Chebyshev polynomials [6, 7]. For some
classes of perturbations, the eigenvalue problems
can be solved analytically (see below) which pro-
vides an additional, probably the most impor-
tant, testing the numerical results.

It can be shown that there exists a transfor-
mation (similar in a sense to Squire’s transforma-
tion [1]) such that the three-dimensional problem
defined by equations (6) can be reduced to an
equivalent two-dimensional problem. Then equa-
tions for the perturbation amplitudes can be re-

duced to a system of two equations for two func-
tions g(η) and h(η) of the form

α
(
αb− αbs+ α3ν + iν

(
α2A(η) +A′′(η)

))
g(η)+

3

2
bα2ηg′(η)−

(
b− bs+ 2α2ν + iανA(η)

)
g′′(η)−

3

2
bηg′′′(η) + νg(IV)(η) = 0, (16)

νC ′(η)g(η) +

(
−1

2
b− bs+ α2ν + iανA(η)

)
h(η)+

3

2
bηh′(η)− νh′′(η) = 0 (17)

It is seen that for C(η) = 0 the system of
equations (16) and (17) decouples into two sep-
arate equations for g(η) and h(η). Thus, in
this case two separate branches exist, first of
which corresponds to the disturbances with one z-
component of the velocity vector changing with x
and y, while the second branch corresponds to the
two-dimensional disturbances with velocity vec-
tor lying in the (x, y) plane and not dependent
on z.

In the case where both A(η) = 0 and C(η) = 0
equations (16) and (17) can be reduced to Kum-
mer’s equation [8] and can be solved in quadra-
tures in terms of confluent hypergeometric func-
tions.

There is an important point in which the sta-
bility problems in cylindrical coordinates differ
from those in Cartesian coordinates: a transfor-
mation, similar to Squire’s transformation, which
reduces the three-dimensional perturbation prob-
lem to an equivalent two-dimensional problem,
does not exist. Therefore, in general, one has
to consider the three-dimensional perturbations
to assess the flow stability. Below we present
the results of numerical solution of the eigenvalue
problems for the most general three-dimensional
perturbations of the unsteady nonparallel flows
developing within expanding pipe.

First, the analysis shows that the flow within
not rotating cylinder and in the absence of the
axial pressure gradient is stable (S < 0) in all the
parameter space. All the eigenvalues are real so
that the disturbances decay monotonically.

If the basic flow includes the part due to the
axial pressure gradient (U0 ̸= 0), positive values
of S appear (see Fig. 1). The neutral curve S = 0
in Fig. 1 separates the regions of stability and in-
stability. It is seen that for any Reynolds number
larger than some critical value Re∗ (for U0 = 30,
Re∗ ≈ 120) there exists a range of wave numbers
α corresponding to unstable solutions. Thus, the
flow including the part due to the axial pressure
gradient is unstable for Re > Re∗. The criti-
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Figure 1: Neutral curve and contours of constant
growth rate S for U0 = 30 and n = 2. The
shaded area represents the region in parameter
space where unstable solutions exist.
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Figure 2: Flow in a gap. The unstable mode.
Red, blue and green lines correspond to negative,
positive and zero values of stream function.

cal Reynolds number Re∗ decreases while U0 in-
creases. Another example of application of the
method is the flow n a gap between rotating ex-
panding cylinders. An unstable mode for this flow
is given in Fig. 2.

4 Concluding remarks

To conclude, in this paper we present a unified,
computational synthesis of analytical and numer-
ical calculations to study stability of viscous un-
steady nonparallel flows. It would be appropriate
here to cite the view expressed by the authors
of Ref. [9] as follows: It isn’t analytical versus
numerical; theoretical physics has much to gain
from the appropriate synthesis of analytical and
numerical approaches. The combination of an-
alytical and numerical solutions may provide a

basis for a well-grounded discussion of some prob-
lematic points of hydrodynamic stability analysis
and a very useful test for methods used in the
hydrodynamic stability theory, in general. It is
also worth remarking that the basic flows whose
stability is studied in the paper are themselves of
interest for fluid dynamics and have received con-
siderable attention in the literature due to their
relevance in a number of engineering applications.
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