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Abstract: -
The problem of variables separation in the linear stability equations, which govern the disturbance
behavior in viscous incompressible fluid flows, is discussed. The so-called direct approach, in which a form
of the ’Ansatz’ for a solution with separated variables as well as a form of reduced ODEs are postulated
from the beginning, is applied. The results of application of the method are the new coordinate systems
and the most general forms of basic flows, which permit the postulated form of separation of variables.
Then the basic flows are specified by the requirement that they themselves satisfy the Navier-Stokes
equations. Calculations are made for the (1+3)-dimensional disturbance equations written in Cartesian
and cylindrical coordinates. The fluid dynamics interpretation and stability properties of some classes
of the exact solutions of the Navier-Stokes equations, defined as flows for which the stability analysis
can be reduced via separation of variables to the eigenvalue problems of ordinary differential equations,
are discussed. The eigenvalue problems are solved numerically with the help of the spectral collocation
method based on Chebyshev polynomials. For some classes of perturbations, the eigenvalue problems can
be solved analytically. Those unique examples of exact (explicit) solution of the nonparallel unsteady flow
stability problems provide a very useful test for numerical methods of solution of eigenvalue problems,
and for methods used in the hydrodynamic stability theory, in general.
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1 Introduction

Problems of hydrodynamic stability are of great
theoretical and practical interest, as evidenced by
the number of publications devoted to this sub-
ject. The linear stability theory (see, e.g., Drazin
and Reid 1981) for a particular flow starts with a
solution of the equations of motion representing
this basic flow. One then considers this solution
with a small perturbation superimposed. Substi-
tuting the perturbed solution into the equations
of motion and neglecting all terms that involve
the square of the perturbation amplitude yield
the linear stability equations which govern the
behavior of the perturbation. The linearization
provides a means of allowing for the many differ-
ent forms that the disturbance can take. In the
method of normal modes, small disturbances are
resolved into modes, which may be treated sepa-
rately because each satisfies the linear equations
and there are no interactions between different
modes.

Thus, the mathematical problem of the de-
termination of stability of a given flow involves
deriving a set of perturbation equations obtained
from the Navier-Stokes equations by linearization

around this basic flow and finding a set of possi-
ble solutions which would permit splitting a per-
turbation into normal modes. For a steady-state
basic flow, normal modes depending on time ex-
ponentially, with a complex exponent λ, are per-
missable - the sign of the real part of λ indicates
whether the disturbance grows or decays in time.
If further separation of variables is possible, it
makes the stability problem amenable to the nor-
mal mode analysis in its common form when the
problem reduces to that of solving a set of ordi-
nary differential equations. It can be done, how-
ever, only for basic flows of specific forms - mostly
those are the parallel flows or their axial symmet-
ric counterparts.

For nonparallel basic flows, when the coeffi-
cients in the equations for disturbance flow are
dependent not only on the normal to the flow co-
ordinate but also on the other coordinates, the
corresponding operator does not separate unless
certain terms are ignored. If, in addition, the
basic flow is non-steady, this brings about great
difficulties in theoretical studies of the instability
since the normal modes containing an exponen-
tial time factor exp(λt) are not applicable here.
Therefore stability of viscous incompressible flows
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developing both in space and time is a little stud-
ied topic in the theory of hydrodynamic stability.

All the above said shows that the method of
separation of variables is of a fundamental impor-
tance for the hydrodynamic stability problems.
Till now, the method of separation of variables
has been used for stability analysis in an intuitive
way which makes it generally applicable only to
the stability problems of the steady-state parallel
flows.

Recently, the so-called direct approach to sep-
aration of variables in linear PDEs has been de-
veloped by a proper formalizing the features of
the notion of separation of variables (see, e.g., Zh-
danov and Zhalij 1999a, 1999b). In the present
paper, we apply this approach to the linear sta-
bility equations which govern the disturbance be-
havior in viscous incompressible fluid flows. The
calculations have been made for the equations
written in both Cartesian and cylindrical coor-
dinates. The eigenvalue problems are solved nu-
merically with the help of the spectral colloca-
tion method based on Chebyshev polynomials.
In some cases, the eigenvalue problems can be
solved analytically. Those unique examples of
exact (even explicit) solution of the nonparallel
unsteady flow stability problems provide a very
useful test for numerical methods of solution of
eigenvalue problems, and for methods used in the
hydrodynamic stability theory, in general.

2 Variable separation using the
direct method

2.1 Formulation

The Navier-Stokes equations governing flows of
incompressible Newtonian fluids are

∂v̂
∂t

+(v̂∇) v̂ = −1
ρ
∇p̂+ ν∇2v̂ and ∇v̂ = 0, (1)

where ρ is the constant density and ν is the con-
stant kinematic viscosity of the fluid.

As usual in stability analysis, we split the ve-
locity and pressure fields (v̂x, v̂y, v̂z, p̂) into two
problems: the basic flow problem (Vx, Vy, Vz, P )
and a perturbation one (vx, vy, vz, p),

v̂x = Vx+vx, v̂y = Vy+vy, v̂z = Vz+vz, p̂ = P+p
(2)

Introducing (2) into the Navier-Stokes equa-
tions (1) and neglecting all terms that involve
the square of the perturbation amplitude, while
imposing the requirement that the basic flow
variables (Vx, Vy, Vz, P ) themselves satisfy the

Navier-Stokes equations, one arrives at the fol-
lowing set of linear stability equations in the
Cartesian coordinates:

∂vx

∂t
+ Vx

∂vx

∂x
+ vx

∂Vx

∂x
+ Vy

∂vx

∂y
+ vy

∂Vx

∂y
+ Vz

∂vx

∂z
+

vz
∂Vx

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2vx

∂x2
+

∂2vx

∂y2
+

∂2vx

∂z2

)
,

∂vy

∂t
+ Vx

∂vy

∂x
+ vx

∂Vy

∂x
+ Vy

∂vy

∂y
+ vy

∂Vy

∂y
+ Vz

∂vy

∂z
+

vz
∂Vy

∂z
= −1

ρ

∂p

∂y
+ ν

(
∂2vy

∂x2
+

∂2vy

∂y2
+

∂2vy

∂z2

)
,

∂vz

∂t
+ Vx

∂vz

∂x
+ vx

∂Vz

∂x
+ Vy

∂vz

∂y
+ vy

∂Vz

∂y
+ Vz

∂vz

∂z
+

vz
∂Vz

∂z
= −1

ρ

∂p

∂z
+ ν

(
∂2vz

∂x2
+

∂2vz

∂y2
+

∂2vz

∂z2

)
,

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0, (3)

2.2 Outline of the direct method

Let us introduce a new coordinate system t, ξ =
ξ(t, x), η = η(t, y), γ = γ(t, z)

We choose the Ansatz for a solution u =
(vx, vy, vz) and p to be found

u = T (t) exp(aξ + sγ + mS(t))f(η),
p = T1(t) exp(aξ + sγ + mS(t))k(η) (4)

where f = (h, f, g) and functions T (t), T1(t),
S(t), ξ(t, x), η(t, y), γ(t, z) are not fixed a pri-
ori but chosen in such a way that inserting the
expressions (4) into system of PDEs (3) yields a
system of three second-order and one first order
ordinary differential equations for four functions
h(η), f(η), g(η), k(η). To get constraints on func-
tions T , T1, S, ξ, η, γ we formalize a reduction
procedure as follows.

First, we postulate the form of the resulting
system of ordinary differential equations as fol-
lows

h′′(η) = U11g
′(η) + U12h

′(η) + U13k
′(η)+

U14f(η) + U15g(η) + U16h(η) + U17k(η),
f ′′(η) = U21g

′(η) + U22h
′(η) + U23k

′(η)+
U24f(η) + U25g(η) + U26h(η) + U27k(η),

g′′(η) = U31g
′(η) + U32h

′(η) + U33k
′(η)+ (5)

+ U34f(η)U35g(η) + U36h(η) + U37k(η),
f ′(η) = U41f(η) + U42g(η) + U43h(η) + U44k(η).

Here Uij are second order polynomials with re-
spect to spectral parameters a, s, m with coeffi-
cients, which are some smooth functions on η and
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should be determined on the next steps of the al-
gorithm. Next, we insert the expressions (4) into
(3) which yields a system of PDEs containing the
functions ξ, η, γ and their first- and second-order
partial derivatives, and the functions f(η), g(η),
k(η) and their derivatives. Further we replace the
derivatives h′′(η), f ′′(η), g′′(η), f ′(η) by the cor-
responding expressions from the right-hand sides
of (5).

Now we regard h′(η), g′(η), k′(η), h(η), f(η),
g(η), k(η) as the new independent variables. As
the functions ξ(x, t), η(y, t), γ(z, t), T (t), T1(t),
S(t), basic flows Vx, Vy, Vz and coefficients of the
polynomials Uij (which are functions of η) are in-
dependent on these variables, we can require that
the obtained equality is transformed into identity
under arbitrary h′(η), g′(η), k′(η), h(η), f(η),
g(η), k(η). In other words, we should split the
equality with respect to these variables. After
splitting we get an overdetermined system of non-
linear partial differential equations for unknown
functions ξ(x, t), η(y, t), γ(z, t), T (t), T1(t), S(t),
basic flows Vx, Vy, Vz and coefficients of the poly-
nomials Uij . At the last step we solve the above
system to get an exhaustive description of coordi-
nate systems providing separability of equations
(3), as well as all possible basic flows Vx, Vy, Vz

such that the system (3) is solvable by the method
of separation of variables.

Thus, the problem of variable separation in
equation (3) reduces to integrating the overde-
termined system of PDEs for unknown functions
ξ(x, t), η(y, t), γ(z, t), T (t), T1(t), S(t), basic
flows Vx, Vy, Vz and coefficients of the polynomials
Uij . This have been done with the aid of Mathe-
matica package.

2.3 Results for equations in Cartesian
coordinates

The most general form of the basic flow is:

Vx = νA(η)T (t)− c′1(t) + xT ′(t)
T (t)

,

Vy = νB(η)T (t)− c′2(t) + yT ′(t)
T (t)

,

Vz = νC(η)T (t)− c′3(t) + zT ′(t)
T (t)

,

The forms of the perturbations vx, vy, vz and p
are:

u = T (t) exp
(

aξ + sγ + m

∫
T (t)2dt

)
f(η),

p = ρ T (t)2 exp
(

aξ + sγ + m

∫
T (t)2dt

)
k(η),

where ξ = T (t)x + c1(t), η = T (t)y + c2(t), γ =
T (t)z + c3(t).

The equations with separated variables are

(m− a2ν − s2ν + aνA(η) + sνC(η))h(η)+
ak(η) + ν(f(η)A′(η) + B(η)h′(η)− h′′(η)) = 0,

f(η)(m− a2ν − s2ν + aνA(η) + sνC(η)+
νB′(η)) + νB(η)f ′(η) + k′(η)− νf ′′(η) = 0,

(m− a2ν − s2ν + aνA(η) + sνC(η))g(η)+
sk(η) + ν(f(η)C ′(η) + B(η)g′(η)− g′′(η)) = 0,

sg(η) + ah(η) + f ′(η) = 0. (6)

The restrictions on the forms of the basic
flows following from the requirement that they
themselves satisfy the Navier-Stokes equations
lead to the two following cases:

Case I:

ξ =
1√
t
x+c1(t); η =

1√
t
y+c2(t); γ =

1√
t
z+c3(t).

Vx =
x

2t
+ νA(η)

1√
t
− c′1(t)

√
t,

Vy = −y

t
− 1√

t

(
tc′2(t) +

3
2
c2(t)

)
,

Vz =
z

2t
+ νC(η)

1√
t
− c′3(t)

√
t, (7)

and the functions A(x) and C(x) satisfy the equa-
tions

3A′(η) + 3ηA′′(η) + 2νA′′′(η) = 0, (8)

3C ′(η) + 3ηC ′′(η) + 2νC ′′′(η) = 0. (9)

which can be solved in terms of the error func-
tions and the generalized hypergeometric func-
tions. The separation Ansatz takes the form

u = tseaξ+mγf(η), p = ρts−1/2eaξ+mγπ(η). (10)

For the Case II we have ξ = x + c1(t); η = y +
c2(t); γ = z + c3(t); Vx = A1η

2 + A2η − c′1(t),
Vy = −c′2(t), Vz = C1η

2 + C2η − c′3(t) and the
separation Ansatz is

u = eaξ+sγ+mtf(η), p = ρeaξ+sγ+mtπ(η).
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2.4 Results for equations in cylindrical
coordinates

The Navier-Stokes equations are written in cylin-
drical coordinates (r, ϕ, z) and then the velocity
and pressure fields v̂r, v̂ϕ, v̂z, p̂ are splitted into
the basic flow and perturbation parts

v̂r = Vr+vr, v̂ϕ = Vϕ+vϕ, v̂z = Vz+vz, p̂ = P+p
(11)

where Vr, Vϕ, Vz, P are the basic flow fields and
vr, vϕ, vz, p are the perturbations.

Application of the direct method defines the
forms of the basic flows allowing separation of
variables in the stability equations as well as the
solutions of the stability eautions with separated
variables.

The most general form of the basic flow is:

Vz = A(ξ)T (t)− c′(t) + zT ′(t)
T (t)

,

Vr = B(ξ)T (t)− r
T ′(t)
T (t)

, Vϕ = C(ξ)T (t), (12)

where ξ = T (t)r, η = T (t)z + c(t).
The forms of the perturbations u =

(vr, vϕ, vz) and p and with the trial functions
f = (f, g, h) and π we have:

u = T (t) exp
(

aη + mϕ + s

∫
T (t)2dt

)
f(ξ),

p = ρT (t)2 exp
(

aη + mϕ + s

∫
T (t)2dt

)
π(ξ).

(13)

The restrictions on the forms of the basic
flows following from the requirement that they
satisfy Navier-Stokes equations lead to the two
cases similar to those obtained for equations in
Cartesian coordinates.

3 Stability properties of some
flows

3.1 Basic flow

Considering the class of solutions in Cartesian co-
ordinates identified in Section 2 as Case I, we will
specify the solutions by setting c1(t) = c2(t) =
c3(t) = 0 but will use a possibility to enrich the
solutions by a shift of the time variable. Making
change of variables t = t′ − 1/b, where b is a con-
stant, and omitting primes in what follows, we
will have the solution of the Navier-Stokes equa-

tions in Cartesian coordinates in the form

Vx =
1√

1− bt

(
−bξ

2
+ νA(η)

)
, Vy =

bη√
1− bt

,

Vz =
1√

1− bt

(
−bζ

2
+ νC(η)

)
,

P

ρ
=

1
1− bt

×

×
(

b2

8
(
ξ2 + ζ2 − 8η2

)− 2ν2 (A3ξ + C3ζ)
)

,

where

ξ =
x√

1− bt
, η =

y√
1− bt

, ζ =
z√

1− bt
(14)

and b can be both positive and negative. The
functions A(η) and C(η) are given in terms of
the error erf(z) and generalized hypergeometric
2F2(z) functions. The perturbations (10) must
be correspondingly specified.

The above formulas remain valid if we intro-
duce the nondimensional variables, with the time
scale 1/|b| and the correspondingly defined veloc-
ity scale. In the dimensionless equations (we will
retain the same notation for the nondimensional
variables), the parameter b takes one of the two
values: b = 1 or b = −1, and ν is replaced by
1/Re where Re is the Reynolds number. (if we
mark the dimensional variables with stars, the
Reynolds number will be Re = L∗2|b∗|/ν∗ where
L∗ is the length scale.)

We will consider the solution for the case of
b = −1 which allows interpretations correspond-
ing to unsteady flows near stretching (imperme-
able or permeable) surfaces or the flows that
develop within a channel possessing permeable,
moving walls. It is worth remarking that the
considered flows are essentially nonparallel – the
flow fields include all three velocity components
dependent on all coordinates.

There exists a class of solutions of the Navier-
Stokes equations in cylindrical coordinates, which
is similar in many features to the class of solutions
in Cartesian coordinates considered above. The
basic flow solution in cylindrical coordinates per-
mits interpretations similar to those considered
above for the solution in Cartesian coordinates.
However, the cylindrical geometry and presence
of the additional free parameters allow one to find
more problem formulations and enrich the prob-
lem definitions. The basic flow might be again
an unsteady axially symmetrical stagnation-point
type flow, with the flow velocity decreasing with
time as (1 + t)−1, but, as distinct from the flows
considered in the previous section, here fluid flows
radially from infinity approaching the axis and
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spreading along it. The basic flow might also be
an unsteady flow inside an expanding stretching
cylinder, which may also rotate, and there is an
injection of fluid through the porous pipe surface.

3.2 criterion for stability

We choose as a criterion for stability that the ra-
tio of the magnitude of a perturbation to that of
a basic flow decreases with time, which for the
solutions leads to

<
(

s +
1
2

)
< 0 or <(s) < −1

2
(15)

where <(s) denotes a real part of the eigenvalue
s (the imaginary part =(s), if nonzero, deter-
mines the oscillation frequency). In particular,
for the decelerating flow (b = −1) the meaning
of instability implies that even any disturbance is
damped (<(s) < 0 for the velocity perturbations
and <(s) < 1/2 for the pressure perturbations)
yet it may dominate the decelerating flow after
sufficient time if <(s) > −1/2. It is also seen
that the condition (15) unifies the stability crite-
rion for the velocity and pressure perturbations.

3.3 Solution of the eigenvalue prob-
lems

The eigenvalue problems were solved numerically
with the help of the spectral collocation method
based on Chebyshev polynomials [4, 5]. For some
classes of perturbations, the eigenvalue problems
can be solved analytically (see below) which pro-
vides an additional, probably the most impor-
tant, testing the numerical results.

It can be shown that there exists a transfor-
mation (similar in a sense to Squire’s transforma-
tion [1]) such that the three-dimensional problem
defined by equations (6) can be reduced to an
equivalent two-dimensional problem. Then equa-
tions for the perturbation amplitudes can be re-
duced to a system of two equations for two func-
tions g(η) and h(η) of the form

α
(
αb− αbs + α3ν + iν

(
α2A(η) + A′′(η)

))
g(η)+

3
2
bα2ηg′(η)− (

b− bs + 2α2ν + iανA(η)
)
g′′(η)−

3
2
bηg′′′(η) + νg(IV)(η) = 0, (16)

νC ′(η)g(η) +
(
−1

2
b− bs + α2ν + iανA(η)

)
h(η)+

3
2
bηh′(η)− νh′′(η) = 0 (17)

It is seen that for C(η) = 0 the system of
equations (16) and (17) decouples into two sep-
arate equations for g(η) and h(η). Thus, in

this case two separate branches exist, first of
which corresponds to the disturbances with one z-
component of the velocity vector changing with x
and y, while the second branch corresponds to the
two-dimensional disturbances with velocity vec-
tor lying in the (x, y) plane and not dependent
on z.

In the case where both A(η) = 0 and C(η) = 0
equations (16) and (17) can be reduced to Kum-
mer’s equation [6] and can be solved in quadra-
tures in terms of confluent hypergeometric func-
tions.

There is an important point in which the sta-
bility problems in cylindrical coordinates differ
from those in Cartesian coordinates: a transfor-
mation, similar to Squire’s transformation, which
reduces the three-dimensional perturbation prob-
lem to an equivalent two-dimensional problem,
does not exist. Therefore, in general, one has
to consider the three-dimensional perturbations
to assess the flow stability. Below we present
the results of numerical solution of the eigenvalue
problems for the most general three-dimensional
perturbations of the unsteady nonparallel flows
developing within expanding pipe.

First, the analysis shows that the flow within
not rotating cylinder and in the absence of the
axial pressure gradient is stable (S < 0) in all the
parameter space. All the eigenvalues are real so
that the disturbances decay monotonically.

If the basic flow includes the part due to the
axial pressure gradient (U0 6= 0), positive values
of S appear (see Fig. 1). The neutral curve S = 0
in Fig. 1 separates the regions of stability and in-
stability. It is seen that for any Reynolds number
larger than some critical value Re∗ (for U0 = 30,
Re∗ ≈ 120) there exists a range of wave numbers
α corresponding to unstable solutions. Thus, the
flow including the part due to the axial pressure
gradient is unstable for Re > Re∗. The criti-
cal Reynolds number Re∗ decreases while U0 in-
creases.

4 Concluding remarks

In the present paper, we have applied the so-
called direct approach to separate variables in the
linear stability equations. As the result, we have
defined several classes of the exact solutions of
the Navier-Stokes equations, for which the linear
stability problems are exactly solvable. We also
determined the corresponding forms of perturba-
tions and equations with separated variables and
extended the analysis to solve numerically the
eigenvalue problems for some flows. The results
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Figure 1: Neutral curve and contours of constant
growth rate S for U0 = 30 and n = 2. The
shaded area represents the region in parameter
space where unstable solutions exist.

should help in furthering current understanding
of the nonparallel flow instability physics and can
provide a necessary foundation for many approx-
imate approaches used so far. The results from
exactly separable stability problems can be used
for testing various assumptions and simplifica-
tions on which those theories are based.
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