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Separation of variables in time-dependent Schrödinger
equations

Alexander Zhalij and Renat Zhdanov

Abstract. We classify (1+3)-dimensional Schrödinger equations for a parti-

cle interacting with an electromagnetic field that are solvable by the method

of separation of variables into second-order ordinary differential equations. It
is established, in particular, that the necessary condition for the Schrödinger

equation to be separable is that the magnetic field must be independent of the
spatial variables. We describe vector-potentials that (a) provide the separabil-

ity of the Schrödinger equation, (b) satisfy vacuum Maxwell equations without

currents, and (c) describe a non-zero magnetic field. Furthermore, we apply
the results obtained for separating variables to the Hamilton–Jacobi equation.

1. Introduction

The principal object of study in the present paper is a problem of the separation
of variables in the Schrödinger equation (SE) for a particle interacting with an
electromagnetic field,

(1.1)

(
i
∂

∂t
− eA0(t, ~x)−

(
i~∇− e ~A(t, ~x)

)2)
ψ(t, ~x) = 0.

where A = (A0, A1, A2, A3) is the vector potential of the electromagnetic field,
e = const.

As this equation has variable coefficients, a natural question arises: which

equations of the form (1.1) are separable, namely, which potentials A0, ~A allow for
separability of the SE in some curvilinear coordinate system?

Winternitz et al. [1, 2] started a systematic study of potentials for which the
stationary SE in two and three dimensions admits the separation of variables. This
approach is based on the fact that a solution with separated variables is a common
eigenfunction of first- or second-order differential operators, which commute with
each other and with the operator of the equation under consideration.

This approach to separation of variables was further developed by Kalnins
and Miller [3, 4]. See [4] and references contained therein for applications of this
approach to equations of form (1.1).
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Independently, the symmetry approach to the separation of variables in the
equations of quantum mechanics and quantum field theory was developed by Shapo-
valov [5] (who was the first to give a systematic treatment of the problem of variable
separation in the Dirac equation using its non-Lie symmetry) and by Bagrov with
collaborators [6]. Shapovalov and Sukhomlin [7] have obtained some separable SEs
of the form (1.1), however, their results are not complete.

In this paper we propose an alternative approach to the problem of separation of
variables in the equation (1.1). The results announced here were partially published
in the papers [8] and [9].

With all the variety of approaches to the separation of variables in PDEs one
can notice three general principles, namely,

a) Representation of a solution to be found in a separated (factorized) form
via several functions of one variable.

b) Requirement that the above mentioned functions of one variable should
satisfy some ordinary differential equations.

c) Dependence of the solution on several arbitrary (continuous or discrete)
parameters, called spectral parameters, or separation constants.

By a proper formalization of the above features we will formulate an algorithm for
variable separation in the SE with a vector-potential.

To have right to talk about the description of all potentials and all coordinate
systems enabling us to separate the SE, one needs to provide a rigorous definition
of the separation of variables. The definition we intend to use is based on ideas
contained in a paper by Koornwinder [10].

Let us introduce a new coordinate system {t, ωa = ωa(t, ~x), a = 1, 2, 3}, where
ωa are real-valued functions, functionally independent with respect to the spatial
variables x1, x2, x3:

(1.2) det

∥∥∥∥∂(ω1, ω2, ω3)

∂(x1, x2, x3)

∥∥∥∥ 6= 0.

For the solution to be found we adopt the following separation Ansatz:

(1.3) ψ(t, ~x) = Q(t, ~x)ϕ0(t, ~λ)ϕ1

(
ω1(t, ~x), ~λ

)
ϕ2

(
ω2(t, ~x), ~λ

)
ϕ3

(
ω3(t, ~x), ~λ

)
,

where Q, ϕµ (µ = 0, 1, 2, 3) are smooth functions of the indicated variables.

Definition 1.1. We say that the SE (1.1) admits separation of variables in a
coordinate system {t, ωa = ωa(t, ~x), a = 1, 2, 3}, if there exists a function Q(t, ~x)
and four ordinary differential equations

(1.4) ϕ′0 = U0(t, ϕ0; ~λ), ϕ′′a = Ua(ωa, ϕa, ϕ
′
a; ~λ), a = 1, 2, 3.

jointly depending on three independent parameters λ1, λ2, λ3 (separation constants),
such that, for each triplet (λ1, λ2, λ3) and for each set of solutions ϕ0(t), ϕ1(ω1),
ϕ2(ω2), ϕ3(ω3) of (1.4), the function (1.3) is a solution of (1.1).

In the above formulas U0, . . . , U3 are some smooth functions of the indicated
variables.

Definition 1.2. Three parameters λ1, λ2, λ3 in (1.4) are called independent,
if the equality

(1.5) rank

∥∥∥∥∂(U0, U1, U2, U3)

∂(λ1, λ2, λ3)

∥∥∥∥ = 3.
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holds, whenever ϕ0(t)ϕ1(ω1)ϕ2(ω2)ϕ3(ω3) 6= 0.

Condition (1.5) secures the essential dependence of a solution with separated

variables on the separation constants ~λ.
Definition 1.1 is quite algorithmic in the sense that it contains a regular algo-

rithm of variable separation in the SE (1.1). Formulas (1.3)–(1.5) form the input
data of the method. The principal steps of the procedure of variable separation in
the SE (1.1) are as follows.

(1) We insert the Ansatz (1.3) into the SE and express the derivatives ϕ′0, ϕ′′1 ,
ϕ′′2 , ϕ′′3 in terms of functions ϕ0, ϕ1, ϕ2, ϕ3, ϕ′1, ϕ′2, ϕ′3, using equations
(1.4).

(2) We split the equality obtained with respect to the variables ϕ0, ϕ1, ϕ2,
ϕ3, ϕ′1, ϕ′2, ϕ′3, λ1, λ2, λ3, i.e. we demand that the obtained equality is
transformed into identity with respect to these variables.

(3) After splitting we get an overdetermined system of nonlinear partial differ-
ential equations for the unknown functions Q, ω1, ω2, ω3, A0, A1, A2, A3.
Solving the system yields an exhaustive description of vector–potentials
A(t, ~x) providing separability of the SE and also the corresponding coor-
dinate systems.

Note, that putting Q = 1, ωa = xa, a = 1, 2, 3 in (1.3) yields the standard
separation of variables in the Cartesian coordinate system. Next, choosing the
spherical coordinates as ω1, ω2, ω3 we arrive at the separation of variables in the
spherical coordinate system and so on. The principal task is describing all possible
forms of the functions Q, ωa, a = 1, 2, 3, that provide separability of the SE in the
sense of the definition given above. The solution of this problem, in turn, requires
describing the functions A0, . . . , A3 that enable the separation of variables in the SE
in the corresponding coordinate system. More precisely, we will need to describe all
cases of coefficients A0, . . . , A3, for which the corresponding SE (1.1) is separable
(in the sense of Definition 1.1) in at least one coordinate system.

Note, that formulas (1.3)–(1.5) form the input data of the method. We can
change these conditions and thereby modify the definition of separation of variables.
For instance, we can change the order of the reduced equations (1.4), or the number
of essential parameters. So, our claim of obtaining the complete description of
vector-potentials and coordinate systems providing separation of variables in (1.1)
makes sense only within the framework of Definition 1.1. If one uses a more general
definition, it might be possible to construct new coordinate systems and vector–
potentials providing separability of equation (1.1). However, all solutions of the SE
with separated variables known to us fit into the above suggested scheme.

Next, we introduce an equivalence relation on the set of all vector–potentials

A0(t, ~x), ~A(t, ~x) providing separability of equation (1.1), on the sets of solutions
with separated variables and the corresponding coordinate systems.

Definition 1.3. We say that two vector–potentials A(t, ~x) and A′(t, ~x) are
equivalent if they are transformed one into another by the gauge transformation

(1.6) ~A→ ~A′ = ~A+ ~∇f, A0 → A′0 = A0 −
∂f

∂t
,

where f = f(t, ~x) is an arbitrary smooth function.
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For the SEs to be invariant with respect to the above transformation, the wave
function ψ(t, ~x) is to be transformed according to the rule

(1.7) ψ → ψ′ = ψ exp(ief)

Indeed, if the transformations (1.6)–(1.7) in the SE (1.1) are performed, we obtain

the initial equation, provided we replace the functions ~A,A0, ψ by ~A′, A′0, ψ
′.

Note that the system of PDEs (1.1) admits a wider equivalence group from
the point of view of the standard theory of partial differential equations [7]. How-
ever, this group cannot be regarded as an equivalence group within the context
of quantum mechanics, since allowed transformations of the wave function must
preserve the probability density ψ∗ψ. It is straightforward to check that the wider
Shapovalov and Sukhomlin equivalence group breaks this rule, because it, generally
speaking, does not preserve ψ∗ψ. For this reason, we restrict our considerations to
gauge transformations only.

Definition 1.4. Two coordinate systems t, ω1, ω2, ω3 and t′, ω′1, ω′2, ω′3
are called equivalent if they give equivalent solutions with separated variables. In
particular, two coordinate systems are equivalent if the corresponding Ansätze (1.3)
are transformed one into another by reversible transformations of the form

t→ t′ = f0(t), ωa → ω′a = fa(ωa), a = 1, 2, 3,(1.8)

Q→ Q′ = Ql0(t)l1(ω1)l2(ω2)l3(ω3),(1.9)

where f0, . . . , f3 and l0, . . . , l3 are some smooth functions of the indicated variables.

Indeed, transformations (1.9) preserve the form of Ansätze (1.3). Hence, after
completing the procedure of separation of variables in these coordinate systems, we
obtain the same solutions with separated variables.

Within these equivalence relations we can always choose the reduced equations
(1.4) to be

(1.10) iϕ′0 = (T0(t)− Ti(t)λi)ϕ0, ϕ′′a = (Fa0(ωa) + Fai(ωa)λi)ϕa,

where T0, Ti, Fa0, Fai are some smooth functions of the indicated variables, a =
1, 2, 3.

Having performed the first two steps of the above algorithm we obtain a system
of nonlinear PDEs for the unknown functions Q, ω1, ω2, ω3 in the form

∂ωi
∂xa

∂ωj
∂xa

= 0, i 6= j, i, j = 1, 2, 3;(1.11)

3∑
i=1

Fia(ωi)
∂ωi
∂xj

∂ωi
∂xj

= Ta(t), a = 1, 2, 3;(1.12)

2

(
∂Q

∂xj
+ ieQAj

)
∂ωa
∂xj

+Q

(
i
∂ωa
∂t

+ ∆ωa

)
= 0, a = 1, 2, 3;(1.13)

Q

3∑
i=1

Fi0(ωi)
∂ωi
∂xj

∂ωi
∂xj

+ i
∂Q

∂t
+ ∆Q+ 2ieAa

∂Q

∂xa

+Q

(
T0(t) + ie

∂Aa
∂xa

− eA0 − e2AaAa
)

= 0.(1.14)

Hereafter the summation over the repeated Latin indices from 1 to 3 is implied.
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Thus the problem of variable separation in the SE reduces to integrating a
system of nonlinear PDEs for eight unknown functions A0, A1, A2, A3, Q, ω1, ω2, ω3

of four variables t, ~x. What is more, some coefficients are arbitrary functions which
should be determined in the process of integrating of the system of PDEs (1.11)–
(1.14). Roughly speaking, to solve a linear equation we have to solve a system of
nonlinear equations.

2. Connection with the symmetry approach

Let us briefly analyze the connection between separability the SE (1.1) and its
symmetry properties.

Definition 2.1. The linear second order differential operator

L = kab(~x, t)
∂2

∂xa∂xb
+ma(~x, t)

∂

∂xa
+ n(~x, t),

where kab,ma, n, (a, b = 1, 2, 3) are smooth functions of ~x, t, is a symmetry operator
for the SE (1.1), if

(2.1) [L, S] = R(~x, t)S,

where S = p0 − papa is the operator of equation (1.1), [L, S] = LS − SL is the
commutator of operators L and S, and R(~x, t) is some smooth function, which
depends on the coefficients of the operator L.

Theorem 2.2. Let the SE (1.1) admit separation of variables in the sense of
Definition 1.1. Then each solution with separated variables is a common eigen-
function of three mutually commuting linear second order symmetry operators of
equation (1.1), the separation constants λ1, λ2, λ3 being their eigenvalues.

Proof. Let us make the following change of variables in equation (1.1)

(2.2) ψ(t, ~x) = Q(t, ~x)Ψ (t, ω1(t, ~x), ω2(t, ~x), ω3(t, ~x)) ,

where Q,ω1, ω2, ω3 is an arbitrary solution of the system of PDE (1.11)–(1.14). Sub-
stituting the expression (2.2) into (1.1) and taking into account equations (1.11)–
(1.14), we get

i
∂Ψ

∂t
+

3∑
a=1

(
∂2Ψ

∂ω2
a

− Fa0(ωa)Ψ

)
∂ωa
∂xc

∂ωa
∂xc
− T0(t)Ψ = 0.

Note, that condition (1.5) and equations (1.10),(1.12) give the condition

(2.3) det ‖Fab‖3a,b=1 6= 0.

Solving equation (1.12) with respect to

∂ω1

∂xc

∂ω1

∂xc
,

∂ω2

∂xc

∂ω2

∂xc
,

∂ω3

∂xc

∂ω3

∂xc
,

we have
∂ωa
∂xc

∂ωa
∂xc

= GbaTb, a = 1, 2, 3,

where Gba are components of the matrix, inverse to matrix ‖Fab‖. Thus, in new
coordinates t, ω1, ω2, ω3,Ψ(t, ω1, ω2, ω3) equation (1.1) takes the form

(2.4) i
∂Ψ

∂t
+

3∑
a=1

(
∂2Ψ

∂ω2
a

− Fa0(ωa)Ψ

)
GbaTb(t)− T0(t)Ψ = 0.
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Now we can construct the triplet of symmetry operators. Let us consider
the system of equations (1.10) for the functions ϕ1(ω1), ϕ2(ω2), ϕ3(ω3). After
multiplying the first one by ϕ0ϕ2ϕ3, the second one by ϕ0ϕ1ϕ3, and the third one
by ϕ0ϕ1ϕ2 we obtain

(2.5)
∂2Ψ

∂ω2
a

= (Fa0(ωa) + Fab(ωa)λb) Ψ, a = 1, 2, 3.

In virtue of condition (2.3) we can solve the system (2.5) with respect to λbΨ,
b = 1, 2, 3

3∑
a=1

Gba

(
∂2Ψ

∂ω2
a

− Fa0(ωa)Ψ

)
= λbΨ, b = 1, 2, 3,

The solution with separated variables

Ψ = ϕ0(t)ϕ1(ω1)ϕ2(ω2)ϕ3(ω3)

is a common eigenfunction of the three operators

(2.6) Pa =

3∑
b=1

Gab

(
∂2

∂ω2
b

− Fb0(ωb)

)
, a = 1, 2, 3,

(Gab is matrix, inverse to ‖Fab(ωa)‖) and moreover the equality

(2.7) PaΨ = λaΨ.

holds.
By a direct (and very cumbersome) computation one can check, that the sec-

ond order differential operators P1, P2, P3 commute pairwise for arbitrary functions
Fab(ωa), Fa0(ωa), a, b = 1, 2, 3, i.e.

(2.8) [Pa, Pb] = PaPb − PbPa = 0, a, b = 1, 2, 3.

After being rewritten in terms of the operators P1, P2, P3 equation (2.4) reads

i
∂Ψ

∂t
+ Ta(t)PaΨ− T0(t)Ψ = 0.

Since the relations

(2.9) [i
∂

∂t
+ Ta(t)Pa − T0(t), Pa] = 0, a = 1, 2, 3,

hold, operators P1, P2, P3 are mutually commuting symmetry operators for equation
(2.4). If we designate by P ′1, P

′
2, P

′
3 the operators P1, P2, P3 written in the initial

variables t, ~x, ψ, then from (2.7)–(2.9) we get the following equalities

[p0 − pcpc, P ′a] = 0, P ′aψ = λaψ, [P ′a, P
′
b] = 0, a, b = 1, 2, 3,

where ψ = Q(t, ~x)ϕ0(t)ϕ1(ω1)ϕ2(ω2)ϕ3(ω3), and p0 − pcpc is operator of equation
(1.1). �

Thus there are two possible approaches to variable separation in linear PDEs
which are based on their symmetry properties. The first one is to start with a set
of commuting symmetry operators of the equation under study and to finish by
constructing the coordinate systems (Winternitz at al [1, 2], Kalnins and Miller
[3, 4], Shapovalov [5, 7]).

Another approach, that proposed in papers [8, 9], is closer to the original un-
derstanding of the separation of variables in PDE. A desired form (1.3) of a solution
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with separated variables is postulated and then it turns out that the solution ob-
tained can be related to a set of mutually commuting symmetry operators of the
equations under consideration.

Both approaches have their merits and drawbacks. We think that the utiliza-
tion of the first approach is the only way to separate variables in multicomponent
systems of PDEs. But to separate variables with one dependent variable it is prefer-
able to apply the second approach, since a computation of symmetry operators is
an extra step which is not, in fact, necessary for obtaining solution with separated
variables.

3. Main results

We do not give the computations needed for integrating of the system of PDEs
(1.11)–(1.14) in full detail, because they are very cumbersome. The details can be
found in the paper [8].

Integration of the system (1.11)–(1.12) gives the most general form of separable
coordinate systems. Its general form ~ω = ~ω(t, ~x) is given implicitly within the
equivalence relation (1.8) by the following formulas:

(3.1) ~x = O(t)L(t) (~z(~ω) + ~v(t)) ,

HereO(t) is a time-dependent 3×3 orthogonal matrix with Euler angles α(t), β(t), γ(t):

O(t) =

 cosα cosβ − sinα sinβ cos γ − cosα sinβ − sinα cosβ cos γ sinα sin γ
sinα cosβ + cosα sinβ cos γ − sinα sinβ + cosα cosβ cos γ − cosα sin γ

sinβ sin γ cosβ sin γ cos γ

 ;

~v(t) stands for the vector-column whose entries v1(t), v2(t), v3(t) are arbitrary smooth
functions of t; ~z = ~z(~ω) is given by one of the eleven formulas

(1) Cartesian coordinate system,

z1 = ω1, z2 = ω2, z3 = ω3,

ω1, ω2, ω3 ∈ R.

(2) Cylindrical coordinate system,

z1 = eω1 cosω2, z2 = eω1 sinω2, z3 = ω3,

0 ≤ ω2 < 2π, ω1, ω3 ∈ R.

(3) Parabolic cylindrical coordinate system,

z1 = (ω2
1 − ω2

2)/2, z2 = ω1ω2, z3 = ω3,

ω1 > 0, ω2, ω3 ∈ R.

(4) Elliptic cylindrical coordinate system,

z1 = a coshω1 cosω2, z2 = a sinhω1 sinω2, z3 = ω3,

ω1 > 0, −π < ω2 ≤ π, ω3 ∈ R, a > 0.

(5) Spherical coordinate system,

z1 = ω−11 sechω2 cosω3,

z2 = ω−11 sechω2 sinω3,

z3 = ω−11 tanhω2,

ω1 > 0, ω2 ∈ R, 0 ≤ ω3 < 2π.
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(6) Prolate spheroidal coordinate system,

z1 = a cschω1 sechω2 cosω3, a > 0,

z2 = a cschω1 sechω2 sinω3,

z3 = a cothω1 tanhω2,

ω1 > 0, ω2 ∈ R, 0 ≤ ω3 < 2π.

(7) Oblate spheroidal coordinate system,

z1 = a cscω1 sechω2 cosω3, a > 0,

z2 = a cscω1 sechω2 sinω3,

z3 = a cotω1 tanhω2,

0 < ω1 < π/2, ω2 ∈ R, 0 ≤ ω3 < 2π.

(8) Parabolic coordinate system,

z1 = eω1+ω2 cosω3, z2 = eω1+ω2 sinω3,

z3 = (e2ω1 − e2ω2)/2,

ω1, ω2 ∈ R, 0 ≤ ω3 ≤ 2π.

(9) Paraboloidal coordinate system,

z1 = 2a coshω1 cosω2 sinhω3, a > 0,

z2 = 2a sinhω1 sinω2 coshω3,

z3 = a(cosh 2ω1 + cos 2ω2 − cosh 2ω3)/2,

ω1, ω3 ∈ R, 0 ≤ ω2 < π.

(10) Ellipsoidal coordinate system,

z1 = a
1

sn(ω1, k)
dn(ω2, k

′) sn(ω3, k), a > 0,

z2 = a
dn(ω1, k)

sn(ω1, k)
cn(ω2, k

′) cn(ω3, k),

z3 = a
cn(ω1, k)

sn(ω1, k)
sn(ω2, k

′) dn(ω3, k),

0 < ω1 < K, −K ′ ≤ ω2 ≤ K ′, 0 ≤ ω3 ≤ 4K.

(11) Conical coordinate system,

z1 = ω−11 dn(ω2, k
′) sn(ω3, k),

z2 = ω−11 cn(ω2, k
′) cn(ω3, k),

z3 = ω−11 sn(ω2, k
′) dn(ω3, k),

ω1 > 0, −K ′ ≤ ω2 ≤ K ′, 0 ≤ ω3 ≤ 4K.

and L(t) is a 3× 3 diagonal matrix

(3.2) L(t) =

 l1(t) 0 0
0 l2(t) 0
0 0 l3(t)

 ,

where l1(t), l2(t), l3(t) are arbitrary non-zero smooth functions that satisfy the fol-
lowing conditions
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• l1(t) = l2(t) for the partially split coordinate systems (cases 2–4 in the
above list)),

• l1(t) = l2(t) = l3(t) for non-split coordinate systems (cases 5–11 in in the
above list)).

Note that we have chosen the coordinate systems ω1, ω2, ω3 by means of the
equivalence relation (1.8) in such a way that the relations

(3.3) ∆ωa = 0, a = 1, 2, 3

hold for all eleven coordinate systems.
From a geometric point of view the right-hand side of formula (3.1) is a result

of the application to vector ~z(~ω) of the following time-dependent transformations
performed one after another:

(1) translations ~z → ~z′ = ~z + ~v(t),
(2) dilatations ~z → ~z′ = L(t)~z,
(3) three-dimensional rotations ~z → ~z′ = O(t)~z with Euler angles α(t), β(t),

γ(t).

Together with the rotations the following vector ~Ω(t) = (Ω1,Ω2,Ω3) is considered

Ω1(t) = γ̇(t) cosα(t) + β̇(t) sinα(t) sin γ(t),

Ω2(t) = γ̇(t) sinα(t)− β̇(t) cosα(t) sin γ(t),(3.4)

Ω3(t) = α̇(t) + β̇(t) cos γ(t),

that is directed along the instantaneous axis of rotation and is called the angular
velocity vector.

After integrating system (1.11)–(1.12) it is not difficult to integrate with the
use of (3.3) the remaining equations (1.13)–(1.14) in the system under study. They
can be regarded as algebraic equations for the functions Aa(t, ~x), (a = 1, 2, 3) and
A0(t, ~x), correspondingly.

Theorem 3.1. The SE (1.1) admits separation of variables (in the sense of
definition 1.1) if and only if it is gauge equivalent to a SE where

– the magnetic field ~H = rot ~A is independent of the spatial variables,
– the space–like components A1, A2, A3 of the vector–potential of the elec-

tromagnetic field are given by

(3.5) ~A(t, ~x) =
1

2

 0 −H3(t) H2(t)
H3(t) 0 −H1(t)
−H2(t) H1(t) 0

 ~x =
1

2
~H(t)× ~x,

where the symbol × denotes the vector product,
– the time–like component A0 is given by formula

(3.6) eA0(t, ~x) =

3∑
a=1

Fa0(ωa)
∂ωa
∂xb

∂ωa
∂xb
− T0(t)− e2AbAb −

1

4
P.

Here T0, Fa0 are some smooth functions of the indicated variables, and P is
some second-order polynomial in the new variables ~ω with coefficients that are
functions of t (for more details see [9]).

Furthemore, we have proved the following theorem:
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Theorem 3.2. Let the SE (1.1) admit separation of variables in some non-
stationary coordinate system t, ωa = ωa(t, ~x), a = 1, 2, 3, where the functions
ω1(t, ~x), ω2(t, ~x), ω3(t, ~x) are given implicitly by formulas (3.1)–(3.2). Then the

angular velocity vector (3.4) of the rotation of this coordinate system equals −e ~H,

where ~H = rot ~A is magnetic field.

It follows from the last theorem that a necessary condition for the SE (1.1)

with non-zero magnetic field ~H to be separable (in the sense of our Definition 1.1)
is that the angular velocity vector (3.4) of rotation of the separation coordinate
system (3.1)–(3.2) has to be non-zero.

We have proven, that the magnetic field ~H = rot ~A has to be independent of the
spatial variables. Next, we have eleven classes of potentials A0(t, ~x), corresponding
to eleven classes of coordinate systems t, ωa = ωa(t, ~x), a = 1, 2, 3, where the
functions ω1(t, ~x), ω2(t, ~x), ω3(t, ~x) are given implicitly by formulas (3.1)–(3.2).

We will finish this section with the following remark. It follows from Theorem

3.1 that the choice of magnetic fields ~H allowing for variable separation in the cor-
responding SE is very restricted. Namely, the magnetic field should be independent
of the spatial variables x1, x2, x3 in order to provide the separability of the SE (1.1)
into three second-order ordinary differential equations of the form (1.4). However,
if we allow for the separation equations to be of a lower order, then additional pos-
sibilities for variable separation in the SE arise. As an example, we give the vector
potential

A(t, ~x) =

(
A0

(√
x21 + x22

)
, 0, 0, A3

(√
x21 + x22

))
,

where A0, A3 are arbitrary smooth functions. The SE (1.1) with this vector-poten-
tial separates in the cylindrical coordinate system

t, ω1 = ln

(√
x21 + x22

)
, ω2 = arctan(x1/x2), ω3 = x3

into two first-order and one second-order ordinary differential equations. The cor-

responding magnetic field ~H = rot ~A is evidently x-dependent. In this respect,
let us also mention the recent paper by Benenti at al. [11], where the problem
of separation of variables in the stationary Hamilton-Jacobi equation with vector-
potential has been studied. They have presented a number of vector-potentials, for
which the Hamilton-Jacobi equation is separable, and the corresponding magnetic
fields are inhomogeneous ones. These potentials allow for separation of variables
in the stationary SEs with vector-potentials as well (in the next section we will
point out the relationship between the separation of variables in the Schrödinger
and Hamilton-Jacobi equations). These facts, as well as paper [7], imply that it
is important to apply our approach to classify the non-stationary SEs of the form
(1.1), which admit separation of variables into first- and second-order ordinary dif-
ferential equations. Here we give the classification results for the case, when all the
reduced equations are second-order ones. We intend to address this problem in a
future publication.
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4. Separation of variables in the Hamilton–Jacobi equation

It is well known [12] that there exists a deep connection between the separation
of variables in the Schrödinger and Hamilton–Jacobi equations. The Hamilton–
Jacobi equation,

(4.1) ut + eA0 + (uxa + eAa)(uxa + eAa) = 0,

separates in any coordinate system providing separability of the Schrödinger equa-
tions (1.1) and, what is more, the inverse assertion is not true. We will make use
of this connection in order to classify separable Hamilton–Jacobi equations.

First we fix the usual form of the separation Ansatz for the Hamilton–Jacobi
equation,

(4.2) u(t, ~x) = S(t, ~x) + ϕ0(t) +

3∑
i=1

ϕi(ωi(t, ~x)),

and, furthermore, fix the form of the ordinary differential equations for ϕ0, ϕ1, ϕ2, ϕ3,

(4.3) ϕ′0 = −T0(t)− Ti(t)λi, ϕ′a = (−Fa0(ωa) + Fai(ωa)λi)
1/2

.

Inserting the Ansatz (4.2) into equation (4.1), eliminating the first derivatives
of the functions ϕ0, ϕ1, ϕ2, ϕ3 with the use of the above equations and splitting with
respect to the variables ϕ0, ϕ1, ϕ2, ϕ3, λ1, λ2, λ3, we arrive at the following system
of nonlinear partial differential equations for the functions S, ω1, ω2, ω3:

∂ωi
∂xa

∂ωj
∂xa

= 0, i 6= j, i, j = 1, 2, 3;

3∑
i=1

Fia(ωi)
∂ωi
∂xj

∂ωi
∂xj

= Ta(t), a = 1, 2, 3;

2

(
∂S

∂xj
+ eAj

)
∂ωa
∂xj

+
∂ωa
∂t

= 0, a = 1, 2, 3;(4.4)

−
3∑
i=1

Fi0(ωi)
∂ωi
∂xj

∂ωi
∂xj

+
∂S

∂t
+ 2eAa

∂S

∂xa
+

∂S

∂xa

∂S

∂xa

−T0(t) + eA0 + e2AaAa = 0.

It is not difficult to check that the change of variables,

(4.5) Q(t, ~x) = exp(iS(t, ~x)),

in (1.11)–(1.14) yields a system that coincides with (4.4) with the exception of the
last equation, where an additional term −i(∆S + eAaxa

) appears. But this term is
a function of t only and is absorbed by T0. Consequently, all the results on variable
separation for the SE apply to the case of the Hamilton–Jacobi equation (4.1) as
well.

5. Separation of variables in the Schrödinger-Maxwell system

The expressions (3.5), (3.6) give the most general form of the vector-potential
of the electromagnetic field, providing separability of the corresponding SEs. In
view of the generality of the results, these expressions are cumbersome, and their
physical interpretation is somewhat difficult. Therefore, it would be interesting to
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know the form of these potentials under certain physical restrictions. The most nat-
ural restriction is that the vector-potential satisfies the vacuum Maxwell equations
without currents.

In this section we describe all explicit forms of the vector-potentials A(t, ~x) that

a) Allow separability of the SE,
b) Satisfy vacuum Maxwell equations without currents,
c) Describe the non-zero magnetic field.

Omitting the details of the calculations we present below the results. Note,
when presenting lists of the vector-potentials A(t, ~x) we use invariance of the system
of the Schrödinger and Maxwell equations with respect to the groups of rotations
by spatial variables x1, x2, x3 and translations of the all variables t, x1, x2, x3.

Case of non-stationary magnetic field.

e ~H = (0, 0, At+B) ,

eA0 = −k
2

(x21 + x22 − 2x23) + a1x1 + a2x2 + a3x3,

where A,B, k, a1, a2, a3 are arbitrary real constants.
The coordinate system is

~x = LO(~z + ~v).

Here O is a time-dependent 3× 3 orthogonal matrix O(α, β, γ), where

α = −1

2
At2 −Bt, β = 0, γ = 0;

~z is the cartesian, cylindrical or elliptic cylindrical coordinates; L is the 3 × 3
diagonal matrix

L =

 l(t) 0 0
0 l(t) 0
0 0 l3(t)

 ,

and ~v(t) is vector-column ~v(t) = (v1, v2, v3)T where functions l(t), l3(t), v1(t), v2(t), v3(t)
are solutions of the following system of ordinary differential equations:

2
c

l4
− 1

2

l̈

l
+ k =

1

2
(At+B)2,

c3
l43
− 1

4

l̈3
l3

= k,

lv̈1 + 2l̇v̇1 + 4c
v1
l3
− 2c11

1

l
= −2(a1 cosα+ a2 sinα),

lv̈2 + 2l̇v̇2 + 4c
v2
l3
− 2c12

1

l
= −2(−a1 sinα+ a2 cosα),

l3v̈3 + 2l̇3v̇3 + 4c3
v3
l33
− 2c13

1

l3
= −2a3.

Here c, c3, c11, c12, c13 are arbitrary real constants.

Cases of stationary magnetic field.
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Case 1:

e ~H = (0, 0, k), k = const 6= 0;

eA0 = −k
2

12
(x21 + x22 − 2x23) + a1x1 + a2x2 + a3x3,

where ~a = (a1, a2, a3) is constant vector.
The coordinate system is

~x = lO(~z + ~v).

Here O is a time-dependent 3×3 orthogonal matrix O(α, β, γ), where α = −kt, β =
const, γ = const; ~z is one of eleven coordinate systems, listed above; function l(t)
is solution of the equation

k2 +
3

2

l̈

l
=

c

l4

given by one of the formulas:

c = ∓1, l2 =

√
C2

1 ±
1

k2
sin

(
2

√
2

3
kt

)
+ C1,

for all coordinate systems with the exception of parabolic cylindrical and parabolic
ones and

c = 0, l = C1 sin

(√
2

3
kt

)
for all eleven coordinate systems. Here C1 is an arbitrary real constant. Vector ~v
is a solution of the following system of ordinary differential equations:

3l~̈v + 6l̇~̇v +
2c

l3
~v = −6O−1~a.

Case 2:

e ~H = (0, 0, k), k = const 6= 0;

eA0 =
a√

x21 + x22 + x23
− k2

12
(x21 + x22 − 2x23), a = const 6= 0.

The coordinate system is

~x = O~z.
Here O is a time-dependent 3×3 orthogonal matrix O(α, β, γ), where α = −kt, β =
const, γ = const and ~z is one of the following coordinate systems: spherical, prolate
spheroidal II (where one should replace z3 by z3 = a(cothω1 tanhω2 ± 1)), and
conical.

Case 3:

e ~H = (0, 0, k), k = const 6= 0;

eA0 = −k
2

12
(x21 + x22 − 2x23) +

a1
r

+ a2
x3
r3

+
a3
r2

(
x3
2r

ln
r + x3
r − x3

− 1

)
,

where r =
√
x21 + x22 + x23 and a1, a2, a3 are real constant numbers.

The coordinate system is

~x = lO~z.
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Here O is a time-dependent 3 × 3 orthogonal matrix O(α, β, γ), where α = −kt,
β = γ = 0; ~z is the spherical coordinates and function l(t) is given by

l2 =

√
C2

1 ±
1

k2
sin

(
2

√
2

3
kt

)
+ C1, or l = C1 sin

(√
2

3
kt

)
under condition a1 = 0 and l = 1 under condition a1 6= 0. Here C1 is an arbitrary
real constant.

Case 4:

e ~H = (0, 0, k), k = const 6= 0;

eA0 = −k
2

12
(x21 + x22 − 2x23) +

a1
r+

+
a2
r−

+ a3

(
1

r+
arctanh

x+3
r+
− 1

r−
arctanh

x−3
r−

)
,

where x±3 = x3 ± a and r± =
√
x21 + x22 + (x3 ± a)2, and a, a1, a2, a3 are arbitrary

real constants. The coordinate system is

~x = O~z.

Here O is a time-dependent 3 × 3 orthogonal matrix O(α, β, γ), where α = −kt,
β = γ = 0 and ~z is the prolate spheroidal coordinates.

Case 5:

e ~H = (0, 0, k), k = const 6= 0;

eA0 = −k
2

12
(x21 + x22 − 2x23) + 2a1a

f1
f

+ 2a2
x3
ff1
− 2a3

(
a
f1
f

arccotf1 −
x3
ff1

arctanh
x3
af1

)
,

where

f =
√

(a2 − r2)2 + 4a2x23, f1 =

√
−a2 + r2 + f

2a2
, r =

√
x21 + x22 + x23,

and a, a1, a2, a3 are arbitrary real constants. The coordinate system is

~x = O~z.

Here O is a time-dependent 3 × 3 orthogonal matrix O(α, β, γ), where α = −kt,
β = γ = 0 and ~z is the oblate spheroidal coordinates.

Note that expression for A0 can be rewritten in the form

eA0 = −k
2

12
(x21+x22−2x23)+

a1 + ia2
r̃+

+
a1 − ia2
r̃−

+ia3

(
1

r̃+
arctanh

x̃+3
r̃+
− 1

r̃−
arctanh

x̃−3
r̃−

)
,

where x̃±3 = x3 ± ia and r̃± =
√
x21 + x22 + (x3 ± ia)2.

Case 6:

e ~H = (0, 0, k), k = const 6= 0;

eA0 = −k
2

6
(x21 + x22 − 2x23) +

a1
r

+ a2x3 +
a3
r

ln
r + x3
r − x3

,

where r =
√
x21 + x22 + x23 and a1, a2, a3 are arbitrary real constants.

The coordinate system is

~x = O~z.
Here O is a time-dependent 3 × 3 orthogonal matrix O(α, β, γ), where α = −kt,
β = γ = 0 and ~z is the parabolic coordinates.



SEPARATION OF VARIABLES IN TIME-DEPENDENT SCHRÖDINGER EQUATIONS 331

Case 7:

e ~H = (0, 0, k), k = const 6= 0;

eA0 = −q
2

(x21 + x22 − 2x23) + a ln(x1 + x2) + a3x3,

where k, a, a3 are arbitrary real constants.
The coordinate system is

x1 = eω1 cos(ω1 − kt), x2 = eω1 sin(ω1 − kt), x3 = l3ω3 + v3,

where l3, v3 are solutions of the system of ordinary differential equations

c3
l43
− 1

4

l̈3
l3

= q, l3v̈3 + 2l̇3v̇3 + 4c3
v3
l33
− 2c13

1

l3
= −2a3,

where c3 and c13 are arbitrary real constants.
Case of non-stationary magnetic field and cases 1-2 of stationary magnetic field

allow for separability of the SE in more then one coordinate systems, and these
cases are superintegrable ones. The corresponding sets of second-order symmetry
operators can be constructed in the explicit form with the help of the theorem 2.2.

Note that some of the potentials obtained have a clear physical meaning. For
instance, cases 2 and 3 under condition k = a2 = a3 = 0 give the standard Coulomb
potential. Case 4 under condition k = a3 = 0 gives the potential for a well-known
two-center Kepler problem, i.e., the problem of finding wave functions of an electron
moving in the field of two fixed Coulomb centres with charges a1, a2 and intercenter
distance 2a (the model of a ionized hydrogen molecule). Coulson and Joseph [13]
showed that the corresponding Schrödinger equation admits separation of variables
in the prolate coordinate system only. We obtained this potential as a particular
case of the more general potential.
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Montréal (Québec) H3C 3J7, Canada

E-mail address: zhaliy@imath.kiev.ua, zhalij@crm.umontreal.ca

Institute of Mathematics of the Academy of Sciences of Ukraine, Tereshchenkivska

Street 3, 01601 Kyiv-4, Ukraine

E-mail address: renat@imath.kiev.ua


