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Concatenating matrices is a powerful strategy for revealing common structures in data. For
instance, stacking k matrices A1, . . . , Ak into a single block matrix

M = [A1 A2 · · · Ak],

allows us to extract shared basis vectors through a single singular value decomposition (SVD).
This approach underlies many algorithms in dimensionality reduction, clustering, and other
data-driven applications [3, 4].

However, an important question is how perturbations in the individual matrices Ai a�ect
the singular values of the concatenated matrix M . Building on classical results in matrix
perturbation theory [1, 2], we derive explicit error bounds that quantify this sensitivity.

Theorem 1. Let M = [A1, . . . , Ak] be formed by horizontally stacking matrices Ai ∈ Rm×n.

Suppose M̃ = [Ã1, . . . , Ãk] is a perturbed version, where Ãi = Ai + Ei. Denote σi(M) and

σi(M̃) their respective singular values, and let r = rank(M). Then for 1 ≤ i ≤ r,

|σi(M̃)− σi(M)| ≤ 1

σi(M)

k∑
j=1

(
2 ∥Aj∥2 ∥Ej∥2 + ∥Ej∥22

)
,

and for i > r,

σi(M̃) ≤

√√√√ k∑
j=1

(
2 ∥Aj∥2 ∥Ej∥2 + ∥Ej∥22

)
.

Remark 1. These bounds ensure that small blockwise perturbations Ei lead to only modest

changes in the dominant singular values of M . Hence, if ∥Ei∥2 is su�ciently small for each i,

σi(M̃) remains close to σi(M) for all indices, preserving the reliability of subsequent low-rank

approximations and clustering tasks.

Practical Impact. Concatenation-based approaches appear in a broad range of problems,
from multisensor signal processing to large-scale matrix clustering. By focusing on explicit
spectral norm estimates, our results allow practitioners to decide when joint compression (via
concatenation) is bene�cial, or when separate compression su�ces.
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