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Over the past decades, considerable attention has been paid to the problem of generalized
convexity and the related properties emerging from random point samples. Several generaliza-
tions of convex hulls have been proposed, with some extending this concept more broadly and
others refining it in specific contexts.

The (K,H)-hull represents one of the broadest generalizations, encompassing several other
formulations as special cases. The (K,H)-hull, introduced in [1], is defined in the following man-
ner. LetK be a closed convex subset of Rd, distinct from the entire space. Let H be a nonempty
subset of Rd×GLd , where GLd represents the group of all invertible linear transformations in
Rd. The (K,H)-hull of a set A ⊆ Rd is defined in [1] as follows:

conv(K,H)(A) =
⋂

(x,g)∈H:A⊆g(K+x)

g(K + x),

where g(B) = {gz : z ∈ B} and B + x = {z + x : z ∈ B}, for (g, x) ∈ H and B ⊆ Rd.
The result presented in this talk demonstrates that the scaled normalization of the (K,H)-

hull of a random sample, distributed according to a probability measure µ on K with a power-
like behavior near the boundary ∂K of K, converges in distribution to a random closed set
which can be viewed as the zero cell of a certain Poisson hyperplane tessellation with explicit
intensity measure.

We assume that K ∈ Kd(0), where Kd(0) is the family of compact convex sets that contain the
origin in their interior. The support plane of a convex closed set K with outer normal vector
u 6= 0 is the following set:

H(K, u) := {x ∈ Rd : 〈x, u〉 = h(K, u)},

where h(K, ·) is the support function of K. For v ∈ ∂K, the normal cone N(K, v) to K at v is
defined by

N(K, v) := {u ∈ Rd \ {0} : v ∈ H(K, u)} ∪ {0}.

Let Nor(K) denote the normal bundle of the closed convex K, that is, a subset of ∂K × Sd−1,
which is the family of (x,N(K, x) ∩ Sd−1) for x ∈ ∂K.

The following assumptions on the measure µ on K is borrowed from [2]. Let µ be a finite
measure, supported by K, and satisfying:

(M1) The measure µ is absolutely continuous with respect to the Lebesgue measure on Rd and
has density f .

(M2) There exists an α > −1 such that, for almost all (a, u) ∈ N̂or(K),

lim
t↓0

f(a+ tu)

tα
= ĝ(a, u) = g(a) ∈ [0,+∞),

where the function ĝ is strictly positive on a subset of ∂K of positive measure which is bounded
almost everywhere and N̂or(K) = {(x,−u) : (x, u) ∈ Nor(K)}.
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Let Ξn = {ξ1, . . . , ξn} be a set of n independent random points with the common distribution
µ. Let Md denote the space of all real-valued d× d matrices, and let exp : Md 7→ GLd denote
the standard matrix exponent. The following set

Xn := {(x,C) ∈ Rd ×Md : Ξn ⊆ exp(C)(K + x)},

which is the main object of investigation in the present talk, has been introduced and studied
in [1] in the case when µ is the uniform distribution on K. The importance of this set and its
connections to conv(K,H)(Ξn) and also to the Lie algebra of Rd ×GLd are explained in [1].

Let PK denote Poisson process on (0,∞)×Nor(K), where density ν is defined as product
of an absolutely continuous measure on (0,∞) with density tα and measure ν∗ on Nor(K),
defined as

ν∗(K,W ∩Nor(K)) =

∫
Nor(K)

1(a,u)∈Wg(a)Cd−1(K, d(a, u)),

where Cd−1(K, ·) is the curvature measure of K, see Section 2 in [3].

Theorem 1. Assume that (M1) and (M2) hold. Additionally, assume that K ∈ Kd(0), and
let F be a closed convex set in Rd ×Md which contains the origin. Let γ = (α + 1)−1 be a
real parameter, with α > −1. The sequence of random closed sets ((nγXn) ∩ F)n∈N converges
in distribution in the space of closed subsets of Rd ×Md endowed with the Fell topology to a
random closed convex set ŽK ∩ F, where

ZK :=
⋂

(t,η,u)∈PK

{
(x,C) ∈ Rd ×Md : 〈Cη + x, u〉 ≤ t

}
. (1)

Corollary 1. Convergence in distribution of random closed sets in Hausdorff metric also
implies convergence of intrinsic volumes, so

Vj(n
γXn ∩ F)

d−→ Vj(ŽK ∩ F) as n→∞, j = 0, 1, . . . d,

where Vj denotes j-th intrinsic volume.

As the set ZK is an element of space Rd×Md, the latter space can be turned into a Euclidean
one, given the proper scalar product, see Section 5.1 in [1]. Then, the set ZK can be viewed as
the zero cell of the Poisson hyperplane tessellation in space Rd ×Md.
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