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Differential inclusions play a fundamental role in mathematical analysis and control theory,
particularly in modeling dynamic systems governed by set-valued mappings. In our research,
we have established existence theorems in optimal control theory through differential inclusion
techniques. A primary concern in this field is the existence of solutions, which is contingent on
various structural and topological properties of the inclusions. Key factors affecting solution
existence include continuity conditions, compactness, upper semicontinuity, and convexity of
the multifunction defining the inclusion. Notably, results such as Filippov’s existence theorem
and measurable selection principles provide rigorous criteria for ensuring the existence of
viable trajectories [2]. Beyond theoretical considerations, these properties hold significant
implications in applied mathematics, optimization, and control processes, shaping stability
and feasibility in practical implementations [1,3,4].

This presentation focuses on the existence theorem for an optimal solution in an optimal
control problem within the calculus of variations. Specifically, the study investigates the
foundational existence results in the context of optimal control problems characterized by
differential inclusions and boundary conditions. By leveraging differential inclusion techniques,
we establish rigorous criteria that ensure the existence of feasible solutions, contributing to the
broader theoretical framework of optimal control.

Let X and Y be two normed spaces. A set-valued mapping F' : X — Y is defined as
a function that assigns to each z € X a subset F(z) C Y. Such a mapping F' is termed
convex if its graph, denoted by gphF, forms a convex subset of X x Y. L;([0,1],R™) denotes
the Banach space of integrable functions z : [0, 1] — R" with the norm |z(-)|., = fol |z(t)|dt.
C([0,1],R™) refers to the Banach space of continuous functions x : [0,1] — R™, with the
norm |z(-)|¢ = max{|xz(t)| : t € [0,1]}. A function x : [0,1] — R" is said to be absolutely
continuous if, for every € > 0, there exists 6 > 0 such that for any countable collection of
disjoint subintervals [t;, 3] of [0,1] satisfying > (2 — t;) < & we have Y |z(t3) — z(t;)| < e.
The space of absolutely continuous functions z : [0,1] — R" is denoted by AC([0, 1], R"™) with
the norm |z(-)|ac = |2(0)] + [ |#(t)|dt

Definition 1. A set-valued mapping F is said to be upper semi-continuous at a point
o € X if there exists a neighborhood  of g such that F(Q2) C C for every open set C
containing F'(z).

Definition 2. A subset X C C([0,1],R") is said to be equicontinuous if, for any ¢ > 0,
there exists a 0 > 0 such that, for every z(-) € X, the inequality |z(t2) — z(¢1)| < e holds
whenever t1,t; € [0,1] and |ty — t1] < 0.

Theorem 1. (Arzela-Ascoli) If a set X C C([0,1],R") is both bounded and equicontin-
uous, then it satisfies a significant compactness property: it contains a uniformly convergent
sequence x;(-) € X, i = 1,2,.... Specifically, there exists a function x(-) € C([0,1],R™) such
that |z;(-) — z(-)|c — 0 as i — oo where | - |¢ denotes the supremum norm on C([0, 1], R™).
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This theorem establishes a crucial compactness property for bounded sets of absolutely
continuous functions. Specifically, if X C C([0,1],R") is a bounded collection of absolutely
continuous functions satisfying the uniform bound @(¢) < b for all z(-) € X and t € [0, 1], then
the set contains a uniformly convergent subsequence.

Counsider the differential inclusion
i(t) € F(x(t)), t €10,1] (1)

where F': R™ — R" is an upper semi-continuous set-valued mapping with closed convex values
contained within a ball of radius b > 0.

Theorem 2. For any wnitial condition xo € R™, there exist solutions to the differential
inclusion (1) with the initial condition x(0) = xq.

To establish the existence of solutions to the differential inclusion (1) subject to the boundary
conditions

ZE(O) e Oy, (L’(l) ey (2)

where Cy, Cy C R™ are closed sets, it is essential to analyze the structural properties of the
set-valued mapping F. Given that F is upper semi-continuous with closed convex values
contained in a bounded region, standard existence theorems for differential inclusions, such
as Filippov’s theorem or viability principles, may be applicable to ensure the existence of
solutions that satisfy the prescribed boundary constraints.

The set Sjo1)(F,Cp) consists of all absolutely continuous functions = : [0,1] — R™ that
satisfy the inclusion in (1) for almost every ¢ € [0, 1] while adhering to the initial condition
x(0) € Cy. This set contains the complete collection of feasible trajectories governed by the
differential inclusion.

Theorem 3. (Compactness and Convergence of Solutions) Let Cy C R™ be a com-
pact set. Suppose there exists a sequence of solutions xi(-) € Sp1(F,Coy). Due to the com-
pactness properties of Cy and the structural conditions of the set-valued mapping F, there
exists a uniformly convergent subsequence xy,(-) such that xp,(-) — x(-) uniformly, where
x(-) € Sjo1)(F, Co) is a solution to the differential inclusion.

Theorem 4. Given that Cy is a compact set and there ezists a trajectory x(-) satisfying
the differential inclusion (1) along with the boundary constraintsz(0) € Cy and x(1) € C, the
existence of an optimal trajectory is ensured.
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