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Di�erential inclusions play a fundamental role in mathematical analysis and control theory,
particularly in modeling dynamic systems governed by set-valued mappings. In our research,
we have established existence theorems in optimal control theory through di�erential inclusion
techniques. A primary concern in this �eld is the existence of solutions, which is contingent on
various structural and topological properties of the inclusions. Key factors a�ecting solution
existence include continuity conditions, compactness, upper semicontinuity, and convexity of
the multifunction de�ning the inclusion. Notably, results such as Filippov's existence theorem
and measurable selection principles provide rigorous criteria for ensuring the existence of
viable trajectories [2]. Beyond theoretical considerations, these properties hold signi�cant
implications in applied mathematics, optimization, and control processes, shaping stability
and feasibility in practical implementations [1,3,4].

This presentation focuses on the existence theorem for an optimal solution in an optimal
control problem within the calculus of variations. Speci�cally, the study investigates the
foundational existence results in the context of optimal control problems characterized by
di�erential inclusions and boundary conditions. By leveraging di�erential inclusion techniques,
we establish rigorous criteria that ensure the existence of feasible solutions, contributing to the
broader theoretical framework of optimal control.

Let X and Y be two normed spaces. A set-valued mapping F : X → Y is de�ned as
a function that assigns to each x ∈ X a subset F (x) ⊂ Y . Such a mapping F is termed
convex if its graph, denoted by gphF , forms a convex subset of X × Y . L1([0, 1],Rn) denotes

the Banach space of integrable functions x : [0, 1] → Rn with the norm |x(·)|L1 =
∫ 1

0
|x(t)|dt.

C([0, 1],Rn) refers to the Banach space of continuous functions x : [0, 1] → Rn, with the
norm |x(·)|C = max{|x(t)| : t ∈ [0, 1]}. A function x : [0, 1] → Rn is said to be absolutely
continuous if, for every ε > 0, there exists δ > 0 such that for any countable collection of
disjoint subintervals [t1k, t

2
k] of [0, 1] satisfying

∑
(t2k − t1k) < δ we have

∑
|x(t2k) − x(t1k)| < ε.

The space of absolutely continuous functions x : [0, 1] → Rn is denoted by AC([0, 1],Rn) with

the norm |x(·)|AC = |x(0)|+
∫ 1

0
|ẋ(t)|dt.

De�nition 1. A set-valued mapping F is said to be upper semi-continuous at a point
x0 ∈ X if there exists a neighborhood Ω of x0 such that F (Ω) ⊂ C for every open set C
containing F (x0).

De�nition 2. A subset X ⊂ C([0, 1],Rn) is said to be equicontinuous if, for any ε > 0,
there exists a δ > 0 such that, for every x(·) ∈ X, the inequality |x(t2) − x(t1)| < ε holds
whenever t1, t2 ∈ [0, 1] and |t2 − t1| < δ.

Theorem 1. (Arzela-Ascoli) If a set X ⊂ C([0, 1],Rn) is both bounded and equicontin-
uous, then it satis�es a signi�cant compactness property: it contains a uniformly convergent
sequence xi(·) ∈ X, i = 1, 2, . . .. Speci�cally, there exists a function x(·) ∈ C([0, 1],Rn) such
that |xi(·)− x(·)|C → 0 as i → ∞ where | · |C denotes the supremum norm on C([0, 1],Rn).
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This theorem establishes a crucial compactness property for bounded sets of absolutely
continuous functions. Speci�cally, if X ⊂ C([0, 1],Rn) is a bounded collection of absolutely
continuous functions satisfying the uniform bound ẋ(t) ≤ b for all x(·) ∈ X and t ∈ [0, 1], then
the set contains a uniformly convergent subsequence.

Consider the di�erential inclusion

ẋ(t) ∈ F (x(t)), t ∈ [0, 1] (1)

where F : Rn → Rn is an upper semi-continuous set-valued mapping with closed convex values
contained within a ball of radius b > 0.

Theorem 2. For any initial condition x0 ∈ Rn, there exist solutions to the di�erential
inclusion (1) with the initial condition x(0) = x0.

To establish the existence of solutions to the di�erential inclusion (1) subject to the boundary
conditions

x(0) ∈ C0 , x(1) ∈ C1 (2)

where C0, C1 ⊂ Rn are closed sets, it is essential to analyze the structural properties of the
set-valued mapping F . Given that F is upper semi-continuous with closed convex values
contained in a bounded region, standard existence theorems for di�erential inclusions, such
as Filippov's theorem or viability principles, may be applicable to ensure the existence of
solutions that satisfy the prescribed boundary constraints.

The set S[0,1](F,C0) consists of all absolutely continuous functions x : [0, 1] → Rn that
satisfy the inclusion in (1) for almost every t ∈ [0, 1] while adhering to the initial condition
x(0) ∈ C0. This set contains the complete collection of feasible trajectories governed by the
di�erential inclusion.

Theorem 3. (Compactness and Convergence of Solutions) Let C0 ⊂ Rn be a com-
pact set. Suppose there exists a sequence of solutions xk(·) ∈ S[0,1](F,C0). Due to the com-
pactness properties of C0 and the structural conditions of the set-valued mapping F , there
exists a uniformly convergent subsequence xkp(·) such that xkp(·) → x(·) uniformly, where
x(·) ∈ S[0,1](F,C0) is a solution to the di�erential inclusion.

Theorem 4. Given that C0 is a compact set and there exists a trajectory x(·) satisfying
the di�erential inclusion (1) along with the boundary constraintsx(0) ∈ C0 and x(1) ∈ C1, the
existence of an optimal trajectory is ensured.
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