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Let L be an algebra over a field F with the binary operations + and [, ]. Then L is called
a (left) Leibniz algebra if it satisfies the left Leibniz identity:

[[a, b], c] = [a, [b, c]]− [b, [a, c]]

for all elements a, b, c ∈ L [1,2].
A linear transformation f of L is called an endomorphism of L, if

f([a, b]) = [f(a), f(b)]

for all elements a, b ∈ L. A bijective endomorphism of L is called an automorphism of L. We
note that the set Aut[,](L) of all automorphisms of L is a group by a multiplication.

Consider the following type of 3-dimensional non-nilpotent Leibniz algebras:

L = Fa1 ⊕ Fa2 ⊕ Fa3, where [a1, a1] = [a1, a3] = a3,

[a1, a2] = [a2, a1] = [a2, a2] = [a2, a3] = [a3, a1] = [a3, a2] = [a3, a3] = 0.

Thus, Leib(L) = [L,L] = Fa3, ζ left(L) = Fa2 ⊕ Fa3, ζright(L) = ζ(L) = Fa2.

Theorem 1. Let G be the automorphism group of a Leibniz algebra L. Then G is isomor-
phic to a subgroup of GL3(F ) consisting of matrices of the following form: α1 0 0

α2 β2 γ2
α3 0 α1 + α3

 ,

where α1, α2, α3, β2, γ2 ∈ F , α1 ̸= 0, β2 ̸= 0, α1 + α3 ̸= 0.
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