OPEN PROBLEMS OF WEAKLY M-CONVEX SET THEORY

T. M. Osipchuk

Institute of Mathematics of NASU, Kyiv, Ukraine

osipchuk.tania@gmail.com

Weakly *m*-convex sets, m = 1, 2, ..., n - 1, in the *n*-dimensional real Euclidean space, $n \ge 2$, can be seen as a generalization of convex sets. Moreover, weakly *m*-convex sets can be disconnected, and under some additional conditions, the disconnectedness of a set in the space necessarily follows from its weak (n-1)-convexity. The theory of weakly *m*-convex sets is newish. The notion was coined by Yurii Zelinskii [1]. A special attention is given to the subclass of weakly *m*-convex sets to which correspond some sets of the complement to the entire space known as *m*-nonconvexity-point sets.

An open subset $E \subset \mathbb{R}^n$, $n \ge 2$, is called *weakly* m-convex, m = 1, 2, ..., n-1, if, through every boundary point of the set E, there passes an m-dimensional plane not intersecting E [1]. A closed subset $E \subset \mathbb{R}^n$, $n \ge 2$, is called *weakly* m-convex, m = 1, 2, ..., n-1, if it is approximated from the outside by a family of open weakly m-convex sets [1]. A point of the complement of a subset $E \subset \mathbb{R}^n$, $n \ge 2$, to the whole space \mathbb{R}^n is an m-nonconvexity point of the set E if every m-dimensional plane passing through the point intersects E. The collection of all m-nonsemiconvexity points of a subset $E \subset \mathbb{R}^n$ with respect to a fixed $m \in \{1, 2, ..., n-1\}$ is said to be the m-nonconvexity-point set corresponding to E and is denoted by E_m^{Δ} [2].

Theorem 1 (Dakhil [3], Osipchuk [4]). An open or a closed weakly (n-1)-convex subset $E \subset \mathbb{R}^n$ with non-empty (n-1)-nonconvexity-point set consists of not less than three connected components.

Theorem 2 (Osipchuk [4]). There exist weakly m-convex domains and closed connected subsets of \mathbb{R}^n with non-empty m-nonconvexity-point sets, m = 1, 2, ..., n - 2.

Theorem 3 (Osipchuk [5, 6]). Suppose that an open subset $E \subset \mathbb{R}^2$ is weakly 1-convex with non-empty set E_1^{\triangle} . Let $\left(E_1^{\triangle}\right)_i$, $j \in N \subseteq \mathbb{N}$, be the components of E_1^{\triangle} . Then

- (a) E_1^{Δ} is open and weakly 1-convex;
- (b) each component $(E_1^{\triangle})_j$, $j \in N$, is the interior of a convex polygon, if E is bounded and consists of finite number of components.

Theorem 4 (Osipchuk [7]). Suppose that an open subset $E \subset \mathbb{R}^n$ is weakly 1-convex with non-empty set E_1^{\triangle} . Then E_1^{\triangle} is open and weakly 1-convex, and there exists a collection of straight lines $\{\gamma(x)\}_{x\in\partial E_1^{\triangle}}$ passing through the points $x\in\partial E_1^{\triangle}$ such that

- the set $\bigcup_{x\in\partial E_1^{\triangle}}\gamma(x)\bigcup E_1^{\triangle}$ does not contain straight lines passing through E_1^{\triangle} ,
- $\bigcup_{x \in \partial E_1^{\triangle}} \gamma(x) \bigcap E = \varnothing.$

Theorem 5 (Osipchuk [7]). There exists an open weakly 1-convex domain $E \subset \mathbb{R}^n$, $n \ge 3$, such that E_1^{Δ} is non-empty, bounded (or unbounded), connected, and non-convex.

Theorem 6 (Osipchuk [7]). Let $E \subset \mathbb{R}^n$ be a closed subset such that Int $E \neq \emptyset$. If E is weakly 1-convex, then Int E is weakly 1-convex.

The most natural next questions to study might be the following.

Problem 1. Suppose that an open subset $E \subset \mathbb{R}^n$, $n \ge 3$, is weakly *m*-convex with nonempty set E_m^{\triangle} , $m = 2, 3, \ldots, n-1$. Is E_m^{\triangle} also open and weakly *m*-convex?

Problem 2. Suppose that a closed subset $E \subset \mathbb{R}^n$, $n \ge 2$, is weakly *m*-convex with nonempty set E_m^{\triangle} , $m = 1, 2, \ldots, n-1$. Is E_m^{\triangle} also closed and weakly *m*-convex?

Problem 3. Suppose that a closed subset $E \subset \mathbb{R}^n$, $n \ge 3$, is weakly (n-1)-convex with non-empty set E_{n-1}^{\triangle} . Is each component of E_{n-1}^{\triangle} convex?

- 1. Momot I. V., Zelinskii Yu. B. On (n, m)-convex sets. Ukr. Mat. Zhurnal, 2001, 53, 3, 422-427.
- 2. Osipchuk T. M. Topological properties of weakly *m*-convex sets. Proceedings of IAMM of NAS of Ukraine, 2020 , 34, 75–84.
- 3. Dakhil H.K. The shadows problems and mappings of fixed multiplicity. candthesis, Institute of Mathematics of NAS of Ukraine, Kyiv, 2017.
- 4. Osipchuk T. M. On closed weakly m-convex sets. Proceedings of the International Geometry Center, 2022, 15, 1, 50–65.
- 5. Osipchuk T. M. Topological and Geometric Properties of the Set of 1-Nonconvexity Points of a Weakly 1-Convex Set in the Plane. Ukrainian Mathematical Journal, 2022, 73, 12, 1918–1936.
- Osipchuk T. M., Tkachuk M. V. On weakly 1-convex sets in the plane. Proceedings of the International Geometry Center, 2023, 16, 1, 42–49.
- 7. Osipchuk T. M. On closed weakly m-convex sets. Proceedings of the International Geometry Center, 2025.