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Definition 1. The rotation number γ(ξ, L) of the continuous vector field ξ : R2 → R2 along
the continuous curve L : [0, 1]→ R2 is the number 1

2π
(φ(1)− φ(0)), where φ is the continuous

branch of the angular function of ξ.

The main object of study is the Gaussian stationary random field ξ : R2 ⊇ U → R2 with
covariance function

Eξi(u)ξi(v) = e−||u−v||
2

.

We investigate the rotation number of ξ on the boundary of compact set B ⊂ R2 (further
denoted as γ(ξ, B)). We assume that the boundary of B is a closed curve with continuous
parametrization ψ : [0, 1] 7→ R2. The rotation number can be calculated as follows [1]:

γ(ξ, B) =
∑

u∈B:ξ(u)=0

sign(det(ξ′(u)))

where
det ξ′(u) =

∂ξx
∂x

(u)
∂ξy
∂y

(u)− ∂ξy
∂x

(u)
∂ξx
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(u)

We prove the following lemmata.

Lemma 1.
P ({∃u ∈ B : ξ(u) = 0, det ξ′(u) = 0}) = 0

Lemma 2.
Eγ(ξ, B) =

∫
B

∫
R4

det(y)pξ(u),ξ′(u)(0, y)dydu

where pξ(u),ξ′(u)(x, y) is the joint density of ξ, ξ′ in the point u ∈ R2.

Lemma 3.
γ(ξ, B) = γ(ξ, B + s)

in distribution, for all s ∈ R2.
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