CENTRALIZERS OF JACOBIAN DERIVATIONS WITH MONOMIAL COEFFICIENTS

Y. D. Molochynskyi¹, O.G. Tyshchenko²

¹Faculty of Mechanics and Mathematics KNU, Kyiv, Ukraine
²Faculty of Mechanics and Mathematics KNU, Kyiv, Ukraine *molochynskyi.e@knu.ua, oleg.tyshchenko.mmf@knu.ua*

Let K be an algebraically closed field of characteristic zero and A = K[x, y] the polynomial ring in two variables. Recall that a K-derivation on A is a K-linear map $\mathcal{D} : A \longrightarrow A$ such that $\mathcal{D}(fg) = \mathcal{D}(f) g + f \mathcal{D}(g)$ for all $f, g \in A$. All the derivations on A = K[x, y] form the Lie algebra $W_2(K)$ relative to the commutation, i.e., $[\mathcal{D}_1, \mathcal{D}_2] = \mathcal{D}_1 \mathcal{D}_2 - \mathcal{D}_2 \mathcal{D}_1$. Every polynomial $f \in A$ defines the Jacobian derivation \mathcal{D}_f on A by the rule:

$$D_f(g) = \det J(f,g),$$

where J(f,g) is the Jacobi matrix of the polynomials f,g.

We study centralizers of Jacobian derivations of a special form in $W_2(K)$. The structure of such centralizers is of great interest, as, from a geometric point of view, every derivation $\mathcal{D} \in W_2(K)$ is a polynomial vector field on K^2 .

Using some results from [2] and [1] we have proved the following statement which can can be useful while studying autonomous systems of differential equations (see, for example [3]):

Theorem 1. Let \mathcal{D} be a nonzero monomial Jacobian derivation of the form

$$\mathcal{D} = -\alpha (n+1) x^{k+1} y^n \frac{\partial}{\partial x} + \alpha (k+1) x^k y^{n+1} \frac{\partial}{\partial y}, \quad \alpha \in K^*, \ k, n \ge 2.$$

Then

(1) If $k \neq n$, then $C_{W_2(K)}(\mathcal{D})$ is a free module of rank 2 over ker \mathcal{D} with free generators \mathcal{D}_1 and T, where

$$\mathcal{D}_1 = -n_1 x \frac{\partial}{\partial x} + k_1 y \frac{\partial}{\partial y} \text{ with}$$
$$k_1 = \frac{k+1}{d}, \ n_1 = \frac{n+1}{d}, \ d = \gcd(n+1,k+1),$$
$$T = -\frac{n}{k-n} x \frac{\partial}{\partial x} + \frac{k}{k-n} y \frac{\partial}{\partial y}.$$

(2) If $k = n \neq 0$, then $C_{W_2(K)}(\mathcal{D})$ has rank 1 over ker \mathcal{D} with the free generator \mathcal{D}_{xy} . (3) If k = n = 0, then $C_{W_2(K)}(\mathcal{D})$ has rank 2 over ker \mathcal{D} with the free generators

$$\mathcal{D} = -x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}, \quad T = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}.$$

- L.P.Bedratyuk, Ie.Yu.Chapovsky, A.P.Petravchuk, Centralizers of linear and locally nilpotent derivations, Ukrainian Math. J., issue 75, N.8, 2023, pp.1043-1052.
- D. I. Efimov, A. P. Petravchuk, M. S. Sydorov, Centralizers of Jacobian derivations, Algebra and Discrete Mathematics, (2023), vol. 36, no. 1, P.22-31.
- 3. J. Nagloo, A. Ovchinnikov, P. Thompson, Commuting planar polynomial vector fields for conservative Newton systems, Communications in Contemp. Mathematics, 22(04), 2020, pp.195-225.