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Let K be an algebraically closed �eld of characteristic zero and A = K[x, y] the polynomial
ring in two variables. Recall that a K-derivation on A is a K-linear map D : A −→ A such that
D(fg) = D(f) g + f D(g) for all f, g ∈ A. All the derivations on A = K[x, y] form the Lie
algebra W2(K) relative to the commutation, i.e., [D1,D2] = D1D2 − D2D1. Every polynomial
f ∈ A de�nes the Jacobian derivation Df on A by the rule:

Df (g) = det J(f, g),

where J(f, g) is the Jacobi matrix of the polynomials f, g.
We study centralizers of Jacobian derivations of a special form in W2(K). The structure

of such centralizers is of great interest, as, from a geometric point of view, every derivation
D ∈ W2(K) is a polynomial vector �eld on K2.

Using some results from [2] and [1] we have proved the following statement which can can
be useful while studying autonomous systems of di�erential equations (see, for example [3]):

Theorem 1. Let D be a nonzero monomial Jacobian derivation of the form

D = −α (n+ 1) xk+1yn
∂

∂x
+ α (k + 1) xkyn+1 ∂

∂y
, α ∈ K∗, k, n ≥ 2.

Then
(1) If k ̸= n, then CW2(K)(D) is a free module of rank 2 over kerD with free generators D1

and T , where

D1 = −n1 x
∂

∂x
+ k1 y

∂

∂y
with
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d
, n1 =
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d
, d = gcd(n+ 1, k + 1),
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x
∂
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+

k
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.

(2) If k = n ̸= 0, then CW2(K)(D) has rank 1 over kerD with the free generator Dxy.
(3) If k = n = 0, then CW2(K)(D) has rank 2 over kerD with the free generators

D = − x
∂

∂x
+ y

∂

∂y
, T = x

∂

∂x
+ y

∂

∂y
.
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