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Suppose that p > 1, and a = {an} is a sequence of complex numbers such that a ∈ ℓp, the
Banach space of p-summable sequence spaces. Then the classical discrete Hardy's inequality
states that
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holds unless an is null ([2], Theorem 326). Also the constant term Cp =
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is sharp.

For p = 2, Hardy [1] �rst established the sharp dual inequality of (1) as below
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where equality holds when all an are null. Copson [3] by adapting Elliott's proof and dual
Hardy's inequality (2) introduced and studied a general variant Hardy's inequality as below
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where the associated constant term is best possible. An equivalent form of the inequality (3)
is reads as below
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with A0 = A1 = 0. If we put qn = 1 for each n ∈ N then one obtains an equivalent version of
(2) as given below
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Similarly for qn = n, n2, n3 for each n ∈ N, then we get the reduced forms of (4) as below
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respectively. Improvement of the inequality (1) is being studied by Keller et al. [4]. The
study of improvement of the variant Hardy inequalities (5-8) were remain to study. In this
presentation, we discuss the improvement of the inequalities (5-8). For example, we prove the
following result as an improvement of the inequality (5). Similarly, we present the improvement
of other variant Hardy inequalities (6-8) in this presentation.

Theorem 1. Suppose that A = {An} be any sequence of complex numbers such that A ∈
Cc(N0) with A0 = A1 = 0. Then
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where the improved weight βn for n ≥ 2 is de�ned as below
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The presentation of the results is based on author's recent work published in [5].
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