ON ACTIONS OF STABILIZERS OF SMOOTH FUNCTIONS ON EDGES OF THEIR REEB GRAPHS

I. V. Kuznietsova¹, Yu.Yu. Soroka²

¹Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine ²Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine *kuznietsova@imath.kiev.ua, sorokayulya@imath.kiev.ua*

Let M be compact connected surface, and P be either a real line or a circle. Denote by D(M, X) the group of diffeomorphisms of M fixed on a closed subset $X \subset M$. There is a natural right action of the group D(M, X) on the space of smooth functions $C^{\infty}(M, P)$ defined by the following rule: $(h, f) \mapsto f \circ h$, where $h \in D(M, X)$, $f \in C^{\infty}(M, P)$. Thus the *stabilizer* of f with respect to the action

 $\mathcal{S}(f,X) = \{h \in \mathcal{D}(M,X) \mid f \circ h = f\}$

consists of f-preserving diffeomorphisms of M. Let

 $\mathcal{O}(f,X) = \{ f \circ h \mid h \in \mathcal{D}(M,X) \}$

be the *orbit* of f under the action. If $X = \emptyset$, then we will omit X from notation.

Endow the spaces D(M, X), $C^{\infty}(M, P)$ with Whitney C^{∞} -topologies, and their subspaces $\mathcal{S}(f, X)$, $\mathcal{O}(f, X)$ with induced ones. Denote by $\mathcal{D}_{id}(M, X)$ the identity path component of $\mathcal{D}(M, X)$ and let $\mathcal{S}'(f, X) = \mathcal{S}(f) \cap \mathcal{D}_{id}(M, X)$.

Definition 1. Denote by $\mathcal{F}(M, P)$ the space of smooth maps $f \in C^{\infty}(M, P)$ having the following properties:

- 1. the map f takes constant values at each connected component of ∂M and has no critical points on it;
- 2. for every critical point z of f there is a local presentation $f_z \colon \mathbb{R}^2 \to \mathbb{R}$ of f near z such that f_z is a homogeneous polynomial $\mathbb{R}^2 \to \mathbb{R}$ without multiple factors.

Homotopy types of stabilizers and orbits of Morse functions were calculated in a series of papers by Sergiy Maksymenko, Bohdan Feshchenko, Elena Kudryavtseva and others. Furthermore, precise algebraic structure of such groups for the case $M \neq S^2, T^2$ was described in [1]. In particular it was proved there that the following theorem holds.

Theorem 1. Let M be a connected compact oriented surface except 2-sphere and 2-torus and let $f \in \mathcal{F}(M, P)$. Then $\pi_0 \mathcal{S}'(f, \partial M) \in \mathcal{B}$, where \mathcal{B} is a minimal class of groups satisfying the following conditions:

- 1) $1 \in \mathcal{B};$
- 2) if $A, B \in \mathcal{B}$, then $A \times B \in \mathcal{B}$;
- 3 if $A \in \mathcal{B}$ and $n \geq 1$, then $A \wr_n \mathbb{Z} \in \mathcal{B}$.

Note that a group G belongs to the class \mathcal{B} iff G is obtained from trivial group by a finite number of operations \times , $\wr_n \mathbb{Z}$. It is easy to see that every group $G \in \mathcal{B}$ can be written as a word in the alphabet $\mathcal{A} = \{1, \mathbb{Z}, (,), \times, \wr_2, \wr_3, \wr_4, \dots\}$. We will call such word a *realization* of the group G in the alphabet \mathcal{A} .

Denote by $\beta_1(G)$ the number of symbols \mathbb{Z} in the realization ω of group G. The number $\beta_1(G)$ is the rank of the center Z(G) and the quotient-group G/[G,G] as shown in [2, Theorem 1.1]). Note, this number depends only on the group G, not the presentation ω . Moreover, $\beta_1(G)$ is first Betti number of $\mathcal{O}(f)$.

Let $W \subset \partial X$ be a connected component of ∂X . Edge of Γ_f will be called *external* if it is incident to the vertex of Γ_f that is corresponding to a non-degenerate critical point of f or non-fixed boundary component of ∂M with respect to the action of S'(f, W). Otherwise, it will be called *internal*. Denote by $\#Orb_{int}(M, W)$ the number of orbits of the action of S'(f, W)on internal edges of Γ_f .

Theorem 2. Let M be a disk D^2 or a cylinder $C = S^1 \times [0,1]$ and $f \in \mathcal{F}(M,P)$. Then

$$\sharp Orb_{int}(M,W) = \beta_1(\pi_0 S'(f,\partial M)),$$

where $W = \partial M$ if $M = D^2$ or $W = S^1 \times 0$ if M is a cylinder.

Acknowledgements We are grateful to Sergiy Maksymenko for fruitful discussions.

- 1. Maksymenko S.I. Deformations of functions on surfaces by isotopic to the identity diffeomorphisms. Topology and its Applications, 2020, Volume 282.
- 2. Kuznietsova, I.V., Soroka, Y.Y. First Betti numbers of orbits of Morse functions on surfaces. Ukrainian Mathematical Journal, 2021, Volume 73, 203–229 p.