LOG-SOBOLEV INEQUALITIES FOR STOCHASTIC DIFFERENTIAL EQUATIONS WITH INTERACTIONS

K. Kuchynskyi¹

 1 Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine kuchinskii1999@gmail.com

We are interested in families $(\mu_t)_{t\geq 0}$ of probability distributions solving the following stochastic differential equation on \mathbb{R}^d :

$$\begin{cases} dX(u,t) &= \int_{\mathbb{R}^d} \phi(X(u,t) - X(v,t)) \mu_0(dv) dt + \sigma dB_t \\ X(u,0) &= u \in \mathbb{R}^d \\ \mu_t &= \mu_0 \circ X^{-1}(\cdot,t), \quad t \ge 0 \end{cases}$$
(1)

where $\sigma > 0$, $\phi : \mathbb{R}^d \longrightarrow \mathbb{R}^d$, μ_0 is an initial probability distribution, and B_t is a standard *d*dimensional Brownian motion. This system describes the evolution of interacting particles [1].

Definition 1. A probability measure μ on \mathbb{R}^d satisfies a log-Sobolev inequality (LSI) with constant C > 0 if for all $h \in \mathcal{C}^1_c(\mathbb{R}^d)$ with $\int_{\mathbb{R}^d} h^2 d\mu = 1$,

$$\int_{\mathbb{R}^d} h^2 \ln(h^2) \,\mathrm{d}\mu \le C \int_{\mathbb{R}^d} |\nabla h|^2 \,\mathrm{d}\mu.$$
(2)

Our goal is to determine suitable conditions under which the family $(\mu_t)_{t\geq 0}$ solving (1) satisfies a LSI, and to calculate corresponding constants C_t . The drift term in (1) can be written as $b(X(u,t),\mu_t) = \int_{\mathbb{R}^d} \phi(X(u,t)-z)\mu_t(\mathrm{d}z)$.

Lemma 1. Assume that the function ϕ from (1) satisfies a one-sided Lipschitz condition: for some constant $L_{\phi} \in \mathbb{R}$,

$$(\phi(y_1) - \phi(y_2)) \cdot (y_1 - y_2) \le L_{\phi} |y_1 - y_2|^2 \text{ for all } y_1, y_2 \in \mathbb{R}^d.$$
(3)

Then, for any $x_1, x_2 \in \mathbb{R}^d$ and any probability measure μ , the drift $b(x, \mu)$ satisfies:

$$b(x_1,\mu) - b(x_2,\mu)) \cdot (x_1 - x_2) \le L_{\phi} |x_1 - x_2|^2.$$
(4)

Lemma 2. If the condition (3) holds, then for $t \ge 0$

$$|X(u,t) - X(v,t)|^2 \le |u - v|^2 e^{2L_{\phi}t}.$$
(5)

Lemma 3. Consider a flow on \mathbb{R} defined by a stochastic differential equation with interactions $dX(u,t) = b(X(u,t),\mu_t)dt + \sigma dB_t$, where X(u,0) = u, $b(x,\mu) = \int_{\mathbb{R}} \phi(x-z)\mu(dz)$, $\mu_t = \mu_0 \circ X^{-1}(\cdot,t)$. If the initial law μ_0 satisfies a LSI with constant C_0 , and ϕ' is bounded, $\sup_x |\phi'(x)| \leq L_{\phi}$, then the law μ_t at time t a.s. satisfies a LSI with constant $C_t = C_0 e^{2L_{\phi}t}$.

1. Dorogovtsev A. A. Measure-valued Processes and Stochastic Flows. — Berlin, Boston: Walter de Gruyter GmbH, 2024, 228 p.