ON A MAXIMAL SUBALGEBRA OF THE LIE ALGEBRA $W_2(\mathbb{K})$

O. Ya. Kozachok¹

¹Faculty of Mechanics and Mathematics of Taras Shevchenko National University of Kyiv,

Kyiv, Ukraine

kozachok. oleks and ra@gmail. com

Let \mathbb{K} be an algebraically closed field of characteristic zero, and let $P_n = \mathbb{K}[x_1, \ldots, x_n]$ be the polynomial ring in n variables. Let us recall that a \mathbb{K} -linear map $D: P_n \to P_n$ is called a \mathbb{K} -derivation on P_n if D(fg) = D(f)g + fD(g) for any $f, g \in P_n$. The vector space $W_n(\mathbb{K})$ of all derivations on P_n is a Lie algebra over the field \mathbb{K} with the Lie bracket $[D_1, D_2] = D_1 D_2 - D_2 D_1$ for any $D_1, D_2 \in W_n(\mathbb{K})$ and from the geometrical point of view $W_n(\mathbb{K})$ consists of all polynomial vector fields on \mathbb{K} , which makes this issue particularly interesting. This Lie algebra was studied by many authors from different points of view (see, e.g., [1], [2], [3]). In particular, in [1] and [3]some maximal subalgebras from $W_n(\mathbb{K})$ were pointed out. In general, there is no description of maximal subalgebras of the Lie algebra $W_n(\mathbb{K})$, so concrete examples of such subalgebras are of interest.

A maximal subalgebra of $W_n(\mathbb{K})$ is a proper subalgebra $M \subset W_n(\mathbb{K})$, i.e. $M \neq W_n(\mathbb{K})$, such that $W_n(\mathbb{K})$ itself is the only Lie subalgebra properly containing M. Some cases with additional restrictions (abelian Lie subalgebras or subalgebras with zero/constant divergence) are also of great interest.

The next theorem describes the maximal subalgebra of the Lie algebra $W_2(\mathbb{K})$ and states some related structural properties. It is important, because $W_2(\mathbb{K})$ represents algebraic vector fields on the affine plane, which are central to algebraic geometry and automorphism groups. And also the simplest case where non-trivial symplectic and Hamiltonian structures appear.

Theorem 1. Let $M_1(\mathbb{K})$ be a subalgebra of the Lie algebra $W_2(\mathbb{K})$ of the form

$$M_1(\mathbb{K}) = \left\{ f(x_1) \frac{\partial}{\partial x_1} + g(x_1, x_2) \frac{\partial}{\partial x_2} \mid f, g \in \mathbb{K}[x_1, x_2] \right\}.$$

Then $M_1(\mathbb{K})$ is a maximal subalgebra of $W_2(\mathbb{K})$, the set $G = \left\{ g(x_1, x_2) \frac{\partial}{\partial x_2} \mid g \in \mathbb{K}[x_1, x_2] \right\}$ is an ideal of the Lie algebra $M_1(\mathbb{K})$ and $G \simeq W_1(\mathbb{K}) \otimes P_1$.

The factor-algebra $M_1(\mathbb{K})/G$ is isomorphic to the Lie algebra $W_1(\mathbb{K})$.

- 1. Bavula V. V., The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence, Communications in Algebra, 2016, Vol. 45, No. 3, 1114–1133.
- 2. Makedonskyi Ie.A., Petravchuk A.P., On nilpotent and solvable Lie algebras of derivations. Journal of Algebra, 2014, Vol. 401, 245-257.
- Rudakov A. N., Subalgebras and automorphisms of Lie algebras of Cartan type. Funktsional. Anal. i Prilozhen., 1986, Vol. 20, No. 1, 83-84.