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We consider the peculiar class F' of the Kolmogorov backward equations with power diffu-
sivity
Fago g+ zuy = |2t
where [ is a real parameter. In 2] we discovered many unexpected and surprising transforma-

tional properties of F’. For example, the class F' admits a distinguished discrete equivalence
transformation

- 1
FJ: t=ysgnz, :%:;, y=tsgnz, u=-—, [B=5-—0.

It turns out to be the only point equivalence transformation that is essential for the group
classification of the class F’, which was exhaustively carried out in [2].
Each equation JF} admits the Lie invariance algebra gg spanned by the vector fields

Pt =0, PY:=0,, I :=ud,, D’ :=(2— B, + 10, + (3 — B)yd,, Z(f?) := 0.,

where the parameter function f? = f#(¢,x,y) runs through the solution set of this equation.
In fact, the algebra gg is the maximal Lie invariance algebra of ]-"é provided 8 € R\ {0,2,3,5}.
The equations F, and F} are the so-called remarkable Fokker—Planck and fine Kolmogorov
backward equations. The extended symmetry analysis of these equations was performed in [1,
3]. The equivalence transformation ¢ maps the equations F and F; to the equations F
and Fj, respectively.

In this talk, we discuss the extended symmetry analysis of the generic Kolmogorov backward
equations from F7, i.e., the equations Fj with 8 € R\ {0,2,3,5}.

The vector fields Z(f?) constitute the infinite-dimensional abelian ideal ggn of the algebra g°.
This ideal is associated with the linear superposition of solutions of 7. The complementary
subspace g3* to g™ in g? that is spanned by the vector fields P¢, PY, Z and D” is a subalgebra
of g°. Thus, the algebra g” splits over the ideal g'™. Up to the skew-symmetry of the Lie bracket
of vector fields, the only nonzero commutation relations among the basis elements of g3* are
the following;:

[Pt7Dﬁ] = (2 - ﬁ)Ptu [Py7Dﬂ] = (3 - ﬁ),Py

The algebra g3® is isomorphic to the algebra A3, © A; with a = (2 — 8)/(3 — 3), see [6] for
notation, which is consistent with Mubarakzyanov’s algebra numeration [4].

Using the original combination of the direct method and the automorphism-based version
of the algebraic method, we compute the point-symmetry pseudogroup G of F, é
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Theorem 1. (i) For € R\ {0,2,5/2,3,5}, the point-symmetry pseudogroup Gz of the
equation Fy consists of the point transformations

t=la*Pt+ X, T=ax, J=ala|* Py+A, @=ou+ f(t,z,y),

where o, \o,A\1 and o are arbitrary constants with ao # 0, and f is an arbitrary solution of F.
(i) In comparison with the general case of B, the point-symmetry pseudogroup Gs/o of the
equation F /2 18 extended by the point transformations

~ .« - — ~ u
t=sgn(z)ala* Py 4+ N, = — y= sgn(z)|a* Pt + Ny, @ = o + f(t,z,y).

For the purpose of Lie reductions of the equation F for each value 8 € R\{0, 2, 3,5}, we clas-
sified the subalgebras of the algebra g3* modulo the adjoint action of the pseudogroup G. This
classification follows from the isomorphism between g3* and A§,® A, with a = (2 - 3)/(3 — 3)
and the related results of Patera and Winternitz from |5|. Based on it, we construct wide fami-
lies of exact solutions of the equations Fj with 3 € R\{0,2,3,5}, in particular those associated
with the codimension-one Lie reductions to the linear (1 + 1)-dimensional heat equations with
the zero or the inverse square potentials. The most prominent among them are the solutions
associated with the value 8 = 1 and their G%-counterparts with 8 = 4. Another prominent
case is given by some codimension-two Lie reductions with 5 = —1 and their G% -counterparts
with 8 = 6, which results in Whittaker equations, see |2, Section 8|.

Following the approach from [3], we discuss the solution generation for the generic Kol-
mogorov backward equations Fj using the action by recursion operators of Fj associated with
Lie symmetries of Fj. It is particularly surprising that in the prominent cases 8 = 1 and 8 = 4,
as well as f§ = —1 and 3 = 6, the constructed families of solutions can be significantly extended
using the above action.
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