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We consider the peculiar class F ′ of the Kolmogorov backward equations with power diffu-
sivity

F ′β : ut + xuy = |x|βuxx,

where β is a real parameter. In [2] we discovered many unexpected and surprising transforma-
tional properties of F ′. For example, the class F ′ admits a distinguished discrete equivalence
transformation

J : t̃ = y sgnx, x̃ =
1

x
, ỹ = t sgnx, ũ =

u

x
, β̃ = 5− β.

It turns out to be the only point equivalence transformation that is essential for the group
classification of the class F ′, which was exhaustively carried out in [2].

Each equation F ′β admits the Lie invariance algebra gβ spanned by the vector fields

P t := ∂t, Py := ∂y, I := u∂u, Dβ := (2− β)t∂t + x∂x + (3− β)y∂y, Z(fβ) := fβ∂u,

where the parameter function fβ = fβ(t, x, y) runs through the solution set of this equation.
In fact, the algebra gβ is the maximal Lie invariance algebra of F ′β provided β ∈ R \ {0, 2, 3, 5}.
The equations F ′0 and F ′2 are the so-called remarkable Fokker–Planck and fine Kolmogorov
backward equations. The extended symmetry analysis of these equations was performed in [1,
3]. The equivalence transformation J maps the equations F ′0 and F ′2 to the equations F ′5
and F ′3, respectively.

In this talk, we discuss the extended symmetry analysis of the generic Kolmogorov backward
equations from F ′, i.e., the equations F ′β with β ∈ R \ {0, 2, 3, 5}.

The vector fields Z(fβ) constitute the infinite-dimensional abelian ideal glinβ of the algebra gβ.
This ideal is associated with the linear superposition of solutions of F ′β. The complementary
subspace gessβ to glin in gβ that is spanned by the vector fields P t, Py, I and Dβ is a subalgebra
of gβ. Thus, the algebra gβ splits over the ideal glin. Up to the skew-symmetry of the Lie bracket
of vector fields, the only nonzero commutation relations among the basis elements of gessβ are
the following:

[P t,Dβ] = (2− β)P t, [Py,Dβ] = (3− β)Py.

The algebra gessβ is isomorphic to the algebra Aa3.4 ⊕ A1 with a = (2 − β)/(3 − β), see [6] for
notation, which is consistent with Mubarakzyanov’s algebra numeration [4].

Using the original combination of the direct method and the automorphism-based version
of the algebraic method, we compute the point-symmetry pseudogroup Gβ of F ′β.
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Theorem 1. (i) For β ∈ R \ {0, 2, 5/2, 3, 5}, the point-symmetry pseudogroup Gβ of the
equation F ′β consists of the point transformations

t̃ = |α|2−βt+ λ0, x̃ = αx, ỹ = α|α|2−βy + λ1, ũ = σu+ f(t, x, y),

where α, λ0,λ1 and σ are arbitrary constants with ασ 6= 0, and f is an arbitrary solution of F ′β.
(ii) In comparison with the general case of β, the point-symmetry pseudogroup G5/2 of the

equation F ′5/2 is extended by the point transformations

t̃ = sgn(x)α|α|2−βy + λ1, x̃ =
α

x
, ỹ = sgn(x)|α|2−βt+ λ0, ũ = σ

u

x
+ f(t, x, y).

For the purpose of Lie reductions of the equation F ′β for each value β ∈ R\{0, 2, 3, 5}, we clas-
sified the subalgebras of the algebra gessβ modulo the adjoint action of the pseudogroup Gβ. This
classification follows from the isomorphism between gessβ and Aa3.4⊕A1 with a = (2− β)/(3− β)
and the related results of Patera and Winternitz from [5]. Based on it, we construct wide fami-
lies of exact solutions of the equations F ′β with β ∈ R\{0, 2, 3, 5}, in particular those associated
with the codimension-one Lie reductions to the linear (1 + 1)-dimensional heat equations with
the zero or the inverse square potentials. The most prominent among them are the solutions
associated with the value β = 1 and their G∼F ′-counterparts with β = 4. Another prominent
case is given by some codimension-two Lie reductions with β = −1 and their G∼F ′-counterparts
with β = 6, which results in Whittaker equations, see [2, Section 8].

Following the approach from [3], we discuss the solution generation for the generic Kol-
mogorov backward equations F ′β using the action by recursion operators of F ′β associated with
Lie symmetries of F ′β. It is particularly surprising that in the prominent cases β = 1 and β = 4,
as well as β = −1 and β = 6, the constructed families of solutions can be significantly extended
using the above action.
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