LIE SYMMETRIES OF GENERIC KOLMOGOROV BACKWARD EQUATIONS WITH POWER DIFFUSIVITY

S.D. Koval^{1,2}, R.O. Popovych^{1,3}

¹ Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str., 01024 Kyiv, Ukraine

²Department of Mathematics and Statistics, Memorial University of Newfoundland,

St. John's (NL) A1C 5S7, Canada

³ Mathematical Institute, Silesian University in Opava, Na Rybníčku 1, 746 01 Opava, Czech Republic

koval.srh@imath.kiev.ua, rop@imath.kiev.ua

We consider the peculiar class \mathcal{F}' of the Kolmogorov backward equations with power diffusivity

$$\mathcal{F}'_{\beta}$$
: $u_t + xu_y = |x|^{\beta} u_{xx}$,

where β is a real parameter. In [2] we discovered many unexpected and surprising transformational properties of \mathcal{F}' . For example, the class \mathcal{F}' admits a distinguished discrete equivalence transformation

$$\mathscr{J}: \quad \tilde{t} = y \operatorname{sgn} x, \quad \tilde{x} = \frac{1}{x}, \quad \tilde{y} = t \operatorname{sgn} x, \quad \tilde{u} = \frac{u}{x}, \quad \tilde{\beta} = 5 - \beta.$$

It turns out to be the only point equivalence transformation that is essential for the group classification of the class \mathcal{F}' , which was exhaustively carried out in [2].

Each equation \mathcal{F}'_{β} admits the Lie invariance algebra \mathfrak{g}_{β} spanned by the vector fields

$$\mathcal{P}^t := \partial_t, \ \mathcal{P}^y := \partial_y, \ \mathcal{I} := u\partial_u, \ \mathcal{D}^\beta := (2-\beta)t\partial_t + x\partial_x + (3-\beta)y\partial_y, \ \mathcal{Z}(f^\beta) := f^\beta\partial_u,$$

where the parameter function $f^{\beta} = f^{\beta}(t, x, y)$ runs through the solution set of this equation. In fact, the algebra \mathfrak{g}_{β} is the maximal Lie invariance algebra of \mathcal{F}'_{β} provided $\beta \in \mathbb{R} \setminus \{0, 2, 3, 5\}$. The equations \mathcal{F}'_{0} and \mathcal{F}'_{2} are the so-called remarkable Fokker-Planck and fine Kolmogorov backward equations. The extended symmetry analysis of these equations was performed in [1, 3]. The equivalence transformation \mathscr{J} maps the equations \mathcal{F}'_{0} and \mathcal{F}'_{2} to the equations \mathcal{F}'_{5} and \mathcal{F}'_{3} , respectively.

In this talk, we discuss the extended symmetry analysis of the generic Kolmogorov backward equations from \mathcal{F}' , i.e., the equations \mathcal{F}'_{β} with $\beta \in \mathbb{R} \setminus \{0, 2, 3, 5\}$.

The vector fields $\mathcal{Z}(f^{\beta})$ constitute the infinite-dimensional abelian ideal $\mathfrak{g}_{\beta}^{\text{lin}}$ of the algebra \mathfrak{g}^{β} . This ideal is associated with the linear superposition of solutions of \mathcal{F}'_{β} . The complementary subspace $\mathfrak{g}_{\beta}^{\text{ess}}$ to $\mathfrak{g}^{\text{lin}}$ in \mathfrak{g}^{β} that is spanned by the vector fields \mathcal{P}^t , \mathcal{P}^y , \mathcal{I} and \mathcal{D}^{β} is a subalgebra of \mathfrak{g}^{β} . Thus, the algebra \mathfrak{g}^{β} splits over the ideal $\mathfrak{g}^{\text{lin}}$. Up to the skew-symmetry of the Lie bracket of vector fields, the only nonzero commutation relations among the basis elements of $\mathfrak{g}_{\beta}^{\text{ess}}$ are the following:

$$[\mathcal{P}^t, \mathcal{D}^\beta] = (2 - \beta)\mathcal{P}^t, \quad [\mathcal{P}^y, \mathcal{D}^\beta] = (3 - \beta)\mathcal{P}^y.$$

The algebra $\mathfrak{g}_{\beta}^{\text{ess}}$ is isomorphic to the algebra $A_{3.4}^a \oplus A_1$ with $a = (2 - \beta)/(3 - \beta)$, see [6] for notation, which is consistent with Mubarakzyanov's algebra numeration [4].

Using the original combination of the direct method and the automorphism-based version of the algebraic method, we compute the point-symmetry pseudogroup G_{β} of \mathcal{F}'_{β} .

Theorem 1. (i) For $\beta \in \mathbb{R} \setminus \{0, 2, 5/2, 3, 5\}$, the point-symmetry pseudogroup G_{β} of the equation \mathcal{F}'_{β} consists of the point transformations

$$\tilde{t} = |\alpha|^{2-\beta}t + \lambda_0, \quad \tilde{x} = \alpha x, \quad \tilde{y} = \alpha |\alpha|^{2-\beta}y + \lambda_1, \quad \tilde{u} = \sigma u + f(t, x, y),$$

where α , λ_0 , λ_1 and σ are arbitrary constants with $\alpha \sigma \neq 0$, and f is an arbitrary solution of \mathcal{F}'_{β} . (ii) In comparison with the general case of β , the point-symmetry pseudogroup $G_{5/2}$ of the equation $\mathcal{F}'_{5/2}$ is extended by the point transformations

$$\tilde{t} = \operatorname{sgn}(x)\alpha|\alpha|^{2-\beta}y + \lambda_1, \quad \tilde{x} = \frac{\alpha}{x}, \quad \tilde{y} = \operatorname{sgn}(x)|\alpha|^{2-\beta}t + \lambda_0, \quad \tilde{u} = \sigma \frac{u}{x} + f(t, x, y).$$

For the purpose of Lie reductions of the equation \mathcal{F}'_{β} for each value $\beta \in \mathbb{R} \setminus \{0, 2, 3, 5\}$, we classified the subalgebras of the algebra $\mathfrak{g}^{\text{ess}}_{\beta}$ modulo the adjoint action of the pseudogroup G_{β} . This classification follows from the isomorphism between $\mathfrak{g}^{\text{ess}}_{\beta}$ and $A^a_{3,4} \oplus A_1$ with $a = (2 - \beta)/(3 - \beta)$ and the related results of Patera and Winternitz from [5]. Based on it, we construct wide families of exact solutions of the equations \mathcal{F}'_{β} with $\beta \in \mathbb{R} \setminus \{0, 2, 3, 5\}$, in particular those associated with the codimension-one Lie reductions to the linear (1 + 1)-dimensional heat equations with the zero or the inverse square potentials. The most prominent among them are the solutions associated with the value $\beta = 1$ and their $G^{\sim}_{\mathcal{F}'}$ -counterparts with $\beta = 4$. Another prominent case is given by some codimension-two Lie reductions with $\beta = -1$ and their $G^{\sim}_{\mathcal{F}'}$ -counterparts with $\beta = 6$, which results in Whittaker equations, see [2, Section 8].

Following the approach from [3], we discuss the solution generation for the generic Kolmogorov backward equations \mathcal{F}'_{β} using the action by recursion operators of \mathcal{F}'_{β} associated with Lie symmetries of \mathcal{F}'_{β} . It is particularly surprising that in the prominent cases $\beta = 1$ and $\beta = 4$, as well as $\beta = -1$ and $\beta = 6$, the constructed families of solutions can be significantly extended using the above action.

- 1. Koval S.D., Bihlo A. and Popovych R.O., Extended symmetry analysis of remarkable (1+2)-dimensional Fokker–Planck equation, *European J. Appl. Math.* **34** (2023), 1067–1098, arXiv:2205.13526.
- 2. Koval S.D., Dos Santos Cardoso-Bihlo E. and Popovych R.O., Surprising symmetry properties and exact solutions of Kolmogorov backward equations with power diffusivity, arXiv:2407.10356.
- 3. Koval S.D. and Popovych R.O., Extended symmetry analysis of (1+2)-dimensional fine Kolmogorov backward equation, *Stud. Appl. Math.* **153** (2024), e12695, arXiv:2402.08822.
- 4. Mubarakzjanov G.M., Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element, *Izv. Vysš. Učebn. Zaved. Matematika* (1963), no. 4, 104–116.
- Patera J. and Winternitz P., Subalgebras of real three and four-dimensional Lie algebras, J. Math. Phys. 18 (1977), 1449–1455.
- Popovych R.O., Boyko V.M., Nesterenko M.O. and Lutfullin M.W., Realizations of real low-dimensional Lie algebras, arXiv:math-ph/0301029v7 (2005) (extended and revised version of paper J. Phys. A 36 (2003), 7337–7360).