LIMIT THEOREMS FOR GLOBALLY PERTURBED RANDOM WALKS

O. O. Kondratenko¹

¹Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

kondratolegua@gmail.com

Let (ξ_1, η_1) , (ξ_2, η_2) ,... be independent copies of an \mathbb{R}^2 -valued random vector (ξ, η) with arbitrarily dependent components. Denote by $(S_n)_{n\geq 0}$ the zero-delayed standard random walk with increments ξ_n for $n \in \mathbb{N} := \{1, 2, ...\}$, that is, $S_0 := 0$ and $S_n := \xi_1 + ... + \xi_n$ for $n \in \mathbb{N}$. Put

$$T_n := S_{n-1} + \eta_n, \quad n \in \mathbf{N}.$$

The sequence $T := (T_n)_{n \ge 1}$ is called *globally perturbed random walk*. Many results concerning T accumulated up to 2016 can be found in the book [1].

For $t \in \mathbf{R}$, define the first passage time into (t, ∞)

$$\tau(t) := \inf\{n \ge 1 : T_n > t\},\$$

the number of visits to $(-\infty, t]$

$$N(t) := \sum_{n \ge 1} \mathbf{1}_{\{T_n \le t\}}$$

and the associated last exit time

$$\rho(t) := \sup\{n \ge 1 : T_n \le t\}.$$

We prove weak law of large numbers for $\tau(t)$ and strong laws of large numbers for $\tau(t)$, N(t) and $\rho(t)$. There is a difference between the first order asymptotic behavior of $\tau(t)$ and that of N(t) and $\rho(t)$. The former depends heavily upon the right distribution tail of η , whereas the latter does not depend on it at all.

Theorem 1. Suppose $\mu = \mathbb{E}[\xi] \in (0, \infty)$. The following assertions are equivalent: (W1) $\lim_{t\to\infty} t^{-1}\tau(t) = \mu^{-1}$ in probability; (W2) $\lim_{n\to\infty} n^{-1} \max_{1\leq k\leq n} T_k = \mu$ in probability; (W3) $\lim_{t\to\infty} t \mathbb{P}\{\eta > t\} = 0$.

Theorem 2. Suppose $\mu = \mathbb{E}[\xi] \in (0, \infty)$. The following assertions are equivalent: (S1) $\lim_{t\to\infty} t^{-1}\tau(t) = \mu^{-1}$ a.s.; (S2) $\lim_{n\to\infty} n^{-1} \max_{1\leq k\leq n} T_k = \mu$ a.s.; (S3) $\mathbb{E}[\eta^+] < \infty$.

Theorem 3. Suppose $\mu = \mathbb{E}[\xi] \in (0, \infty)$. If, for some $t \in \mathbb{R}$, $N(t) < \infty$ a.s. or $\rho(t) < \infty$ a.s., then

$$\lim_{t \to \infty} \frac{N(t)}{t} = \lim_{t \to \infty} \frac{\rho(t)}{t} = \frac{1}{\mu} \quad \text{a.s.}$$

For a, b > 0, let $(t_k^{(a,b)}, j_k^{(a,b)})$ be the atoms of a Poisson random measure $N^{(a,b)}$ on $[0, \infty) \times (0, \infty)$ with mean measure LEB $\times \mu_{a,b}$, where LEB is Lebesgue measure on $[0, \infty)$ and $\mu_{a,b}$ is a measure on $(0, \infty)$ defined by

$$\mu_{a,b}((x,\infty]) = ax^{-b}, \quad x > 0.$$

http://www.imath.kiev.ua/~young/youngconf2025

Denote by $D := D[0, \infty)$ the Skorokhod space, that is, the set of càdlàg functions defined on $[0, \infty)$. We shall use the J_1 - and M_1 -topologies, which are standard topologies on D. We write \implies to denote weak convergence in a function space.

We prove two distributional limit theorems for $\tau(t)$ for some distributions of η .

Theorem 4. Suppose $\mu = E[\xi] \in (-\infty, \infty)$ and $P\{\eta > t\} \sim c/t$ as $t \to \infty$ for some c > 0. Then

$$\left(\frac{\tau(ut)}{t}\right)_{u \ge 0} \implies \left(\inf\{z \ge 0 : \max_{k: t_k^{(c,1)} \le z} (\mu t_k^{(c,1)} + j_k^{(c,1)}) > u\}\right)_{u \ge 0}, \quad t \to \infty$$

in the M_1 -topology on D.

Theorem 5. Suppose $\mu = E[\xi] \in (-\infty, \infty)$ and $P\{\eta > x\} \sim x^{-\alpha}\ell(x)$ as $x \to \infty$ for some $\alpha \in (0, 1)$ and some ℓ slowly varying at ∞ . Then

$$\left(\mathbf{P}\{\eta > t\}\tau(ut)\right)_{u \ge 0} \implies \left(\inf\{z \ge 0: \max_{k: t_k^{(1,\alpha)} \le z} j_k^{(1,\alpha)} > u\}\right)_{u \ge 0}, \quad t \to \infty$$

in the M_1 -topology on D.

We obtain several functional limit theorems which quantify the rate of convergence in the laws of large numbers for $\tau(t)$, N(t) and $\rho(t)$.

Theorem 6. Suppose $\mu = E[\xi] \in (0, \infty)$ and $\sigma^2 := Var[\xi] \in (0, \infty)$. If $E[\eta^+] < \infty$, then

$$\left(\frac{\tau(ut) - \mu^{-1}ut}{(\sigma^2 \mu^{-3}t)^{1/2}}\right)_{u \ge 0} \stackrel{\text{f.d.}}{\Longrightarrow} \left(B(u)\right)_{u \ge 0}, \quad t \to \infty,$$

where $(B(u))_{u\geq 0}$ is a standard Brownian motion. If $E[\eta^-] < \infty$, then

$$\left(\frac{\rho(ut) - \mu^{-1}ut}{(\sigma^2 \mu^{-3}t)^{1/2}}\right)_{u \ge 0} \stackrel{\text{f.d.}}{\Longrightarrow} \left(B(u)\right)_{u \ge 0}, \quad t \to \infty.$$

If $E[\eta] \in (-\infty, \infty)$, then

$$\begin{pmatrix} \left(\frac{\tau(ut) - \mu^{-1}ut}{(\sigma^2 \mu^{-3}t)^{1/2}}\right)_{u \ge 0}, \left(\frac{N(ut) - \mu^{-1}ut}{(\sigma^2 \mu^{-3}t)^{1/2}}\right)_{u \ge 0}, \left(\frac{\rho(ut) - \mu^{-1}ut}{(\sigma^2 \mu^{-3}t)^{1/2}}\right)_{u \ge 0} \end{pmatrix} \xrightarrow{\text{f.d.}} ((B(u))_{u \ge 0}, (B(u))_{u \ge 0}), \quad t \to \infty$$

Theorem 7. Suppose $\mu = E[\xi] \in (0, \infty)$, $\sigma^2 = Var[\xi] \in (0, \infty)$ and $E[\eta^-] < \infty$. Then

$$\left(\frac{N(ut) - \mu^{-1}ut + \mu^{-1} \int_0^{ut} \mathbf{P}\{\eta > y\} \mathrm{d}y}{(\sigma^2 \mu^{-3} t)^{1/2}}\right)_{u \ge 0} \implies \left(B(u)\right)_{u \ge 0}, \quad t \to \infty$$

in the J_1 -topology on D, where $(B(u))_{u\geq 0}$ is a standard Brownian motion.

The presentation is based on the article [2].

- 1. Iksanov A. Renewal theory for perturbed random walks and similar processes. Cham: Birkhäuser, 2016, 250 p.
- Iksanov A., Kondratenko O. Limit theorems for globally perturbed random walks. Stochastic Models, 2025 (to appear). Preprint available at https://arxiv.org/abs/2501.02123.