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Consider the model of mixtures with varying concentrations [1], where each object Oj of
sample O1, . . . , On belongs to one ofM populations (components of mixture). The true number
of a component number κj for which Oj belongs to is unknown, but its distribution is known:

P (κj = k) = p
(k)
j:n,

where the probabilities {p(k)j:n} are called concentrations.
For each object Oj a bivariate vector of features (Xj, Yj) is observed. The interactions

between Xj and Yj are described in the nonparametric form

Yj = g(κj)(Xj) + εj, (1)

where g(k) is an unknown regression function for k-th component of mixture, εj is a random
error term, the distribution of εj can be different for different components of mixture. It is
assumed that the distribution of Xj | {κj = k} is absolutely continuous with probability density
function f (k) respectively.

In order to estimate g(k), consider the modified Nadaraya-Watson estimator from [2]:

ĝ
(m)
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0,0:n

(2)

and the modified local-linear regression estimator from [3]:

ĝ
(m)
LLR,n(x0) =

Ŝ
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(m)
1,1:nŜ
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Ŝ
(m)
2,0:nŜ
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where the weighted sums Ŝ(m)
p,q:n = Ŝ

(m)
p,q:n(x0) are defined as follows:
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Y q
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K : R→ R+ is a kernel function and h > 0 is a bandwidth parameter, {amj:n} are the minimax
coefficients, described in [1].

Consider the estimation of g(m) at such point x0, where f (m) has a jump discontinuity. In case
of the homogeneous distribution of data, it is known that the local-linear regression estimator
has the better asymptotic properties on the boundary of density function of the regression
in comparison to the Nadaraya-Watson estimator, considering that the rate of convergence
remains the same regardless of the type of point at which the regression function is estimated,
see [4] and [5].

For model (1) it is empirically known that the local-linear regression estimator (3) outper-
forms the Nadaraya-Watson estimator (2) in terms of bias and rate of convergence to g(m)(x0),
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see [6]. In this talk, we present theoretical results on weak convergence of estimators (2) and
(3) for the case of jump point of f (m).

The results are obtained with the help of the asymptotics of the vector of weighted sums.
Denote S
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n = (S
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2,0 )T the vector of weighted sums and its normal-

ization as ∆
(m)
n =

√
nh · (S(m)

n − E[S
(m)
n ]). Averaging operator is denoted as 〈v〉n = 1

n

∑n
j=1 vj,

v = (v1, . . . , vn)T ∈ Rn. Arithmetic operations with vectors in averaging are performed entry-
wise.

Theorem 1. Consider the following conditions:
1. For all k = 1,M the limits exist and finite:

f (k)(x0±) = lim
x→x0±0

f (k)(x), g(k)(x0±) = lim
x→x0±0

g(k)(x),

2. g(m) is twice continuosly differentiable in the neighbourhood of x0,

3. There exist lim
n→∞

Γn = Γ, where Γn = (
〈
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〉
n
)Mk1,k2=1,

4. For all k, k1, k2 = 1,M the limits exist and finite:〈
(a(m))2p(k)

〉
= lim
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n
,
〈
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5. h = hn: h→ 0, nh→∞, n→∞,

6. suppK(z) ⊂ [−A,A] for some A > 0,

7.
∫∞
−∞ z

2K(z)dz <∞,
∫∞
−∞ z

4(K(z))2dz <∞,

8. E[ε4j | κj = k] <∞ are finite for all j = 1, n, k = 1,M .
Then the following weak convergence holds:

∆(m)
n →W N(0,Σ(m)).

From Theorem 1, the results on estimators (2) and (3) are obtained. Specifically, the
distributions of the normalized estimators

n1/3(ĝ
(m)
NW,n(x0)− g(m)(x0)), n

2/5(ĝ
(m)
LLR,n(x0)− g(m)(x0))

are asymptotically normal if one sets h = Hn−1/3 and h = Hn−1/5 respectively.
These theoretical results are demonstrated through the simulations.
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