About the main relation of Wiman-Valiron theory and asymptotical h-density of an exeptional sets

S.I. Dubei¹, O.B.Skaskiv²

¹Ivan Franko National University of Lviv, Lviv, Ukraine
²Ivan Franko National University of Lviv, Lviv, Ukraine sviatoslav.dubei@lnu.edu.ua, oleh.skaskiv@lnu.edu.ua

Let L be the class positive increasing on $[0; +\infty)$ functions, and L_1 be the subclass of the functions $h \in L$ such that $h\left(x + \frac{1}{h(x)}\right) = O(h(x)), (x \to +\infty)$. For a Lebesgue measurable set $E \subset [0; +\infty)$ of finite Lebesgue measure meas $E = \int_E dx < +\infty$ we define its upper $D_h(E)$ and lower $d_h(E)$ asymptotic h-density on ∞ by the equalities

 $D_h(E) = \lim_{R \to +\infty} h(R) \cdot \max(E \cap [R; +\infty)), \quad d_h(E) = \lim_{R \to +\infty} h(R) \cdot \max(E \cap [R; +\infty)).$

Denote by $S(a,b), -\infty \leq a < b \leq +\infty$, the class of analytic in $\Pi(a,b) = \{z : a < \operatorname{Re} z < b\}$ functions such that $(\forall x \in (a,b)): M(x,F) := \sup\{|F(t+iy)| : a < t \leq x, y \in \mathbb{R}\} < +\infty$, where $L(x,F) = (\ln M(x,F))'_{+}$ is the right-hand derivative.

It is known (see [1, p.149, Theorem 1.3.17]) that for functions $F \in S(-\infty, +\infty)$ such that $L(x, F) \to +\infty$ $(x \to +\infty)$ the relation $F'(z) = (1 + o(1))L(x, F) \cdot F(z)$ holds as $x \to +\infty$ outside some set E of finite Lebesgue measure, for all z such that $\operatorname{Re} z = x$ and $|F(z)| = (1 + o(1))M(x, F) \quad x \to +\infty$.

This statement about the relation $F'(z) = (1 + o(1))L(x, F) \cdot F(z)$ is used in the study of asymptotic properties of entire solution from the class $S(-\infty, +\infty)$ of differential equations (see, for example, [1]). Due to the existence of an exceptional set of finite logarithmic measure, the domain of applicability is limited to the class of an entire solutions of finite *R*-order $\varrho_R = \lim_{x \to +\infty} \ln \ln M(x, F)/x < +\infty$. Therefore, there is a need for statements that would more precisely describe the value of an exceptional set. Such a statement is proved in [2].

Theorem 1. [2] Let the functions $\Phi \in L$ and $h \in L_1$ be such that $h(r) = o(\Phi(r))$ $(r \to +\infty)$. If $F \in \mathcal{S}(0, +\infty)$ and $L(x, F) \ge \Phi(x)$ $(x \ge x_0)$, then the relation $F'(z) = (1+o(1))L(x, F) \cdot F(z)$ holds as $x \to +\infty$ $(x \notin E, \mathcal{D}_h(E) = 0)$ for each z, $\operatorname{Re} z = x$, such that the relation |F(z)| = (1+o(1))M(x, F) holds as $x \to +\infty$.

We replace the condition $L(x, F) \ge \Phi(x)$ in Theorem 1 with a much weaker condition. This is indicated by the following theorem.

Theorem 2. [3] Let $\Phi, h \in L$ be the functions such that $h(2r) = o(\Phi(r))(r \to \infty)$. If $F \in S_{\infty}(0,\infty)$ and

 $(\exists x_n \nearrow +\infty \ (n \to +\infty)): \quad L(x_n, F) \ge \Phi(x_n) \ (n \ge 1),$ the relation F'(z) = (1 + o(1))L(x, F)F(z) holds as $x \to +\infty$ ($x \notin E, d_h(E) = 0$) for all z such that Rez = x and |F(z)| = (1 + o(1))M(x, F) as $x \to +\infty$.

However, Theorem 2, instead of the condition $h(r) = o(\Phi(r))$ $(r \to +\infty)$, contains the following stronger condition $h(2r) = o(\Phi(r))$ $(r \to +\infty)$.

Conjecture 1. In Teorem 2, the condition $h(2r) = o(\Phi(r))$ $(r \to \infty)$ can be replaced by the condition $h(r) = o(\Phi(r))$ $(r \to \infty)$.

http://www.imath.kiev.ua/~young/youngconf2025

References

- Strelitz Sh. I., Asymptotic properties of analytical solutions of differential equations, Vilnius: Mintis, 1972.
- Salo T.M., Skaskiv O.B., Stasyuk Ya.Z. On a central exponent of entire Dirichlet series, Mat. Stud., 19 (2003), no. 1, 61–72.
- Skaskiv O.B., Dubei S.I. On the main relation of the Wiman-Valiron theory and asymptotic h-density of an exceptional sets, Precarpathian bulletin of the Shevchenko scientific society. Number, no. 19 (73) (2024), 18-23.