REPRESENATIONS AND COHOMOLOGIES OF THE ALTERNATING GROUP OF DEGREE 4

Yu. Drozd¹, A. Plakosh²

¹Harvard University, Cambridge, MA, USA ^{1,2}Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine *y.a.drozd@gmail.com, andrianaplakosh@gmail.com*

Let A_4 be the alternating group of degree 4. We consider the *integral representations* of this group, that is $\mathbb{Z}A_4$ -modules M such that the abelian group of M is free of finite rank (A_4 *lattices*). Recall that a classification of 2-adic representations of A_4 was obtained by Nazarova [3]. Unfortunately, this classification gives no idea how to use it to calculate cohomologies of A_4 -lattices. We propose another approach based on the technique of *Bäckström orders* [4]. Namely, since the group ring is always Gorenstein, all its 2-adic representations, except projective ones, are actually representations of an overring A [2]. In the case of \mathbb{Z}_2A_4 this overring is a Bäckström order with the enveloping hereditary order $\mathbb{Z}_2 \times \mathbb{Z}_2[\theta] \times \text{Mat}(3, \mathbb{Z}_2)$, where $\theta = \sqrt[3]{1}$, and the quotient $A/\text{rad}A = \mathbb{F}_2 \times \mathbb{F}_4$. Using it, we relate 2-adic representations of A_4 with representations of the valued graph of type \tilde{F}_4 [1]:

where the fields associated with • are \mathbb{F}_2 and those associated with \circ are \mathbb{F}_4 . It allows to give a complete description of the Auslander-Reiten quiver of the category of A-lattices. We also describe all indecomposable integral representations of A₄ and explain non-uniqueness of decomposition of representations into indecomposables.

It is known that $\tau M \simeq \Omega M$ for every A-lattice M, where τ is the Auslander-Reiten transform and Ω is the syzygy of $\mathbb{Z}A_4$ -lattices [2]. Using it, we calculate Tate cohomologies of all A₂-lattices.

- Dlab V., Ringel C. M. Indecomposable representations of graphs and algebras. Mem. Amer. Math. Soc., 1976, 73, 1–57.
- 2. Drozd Yu. A. Rejection lemma and almost split sequences. Ukr. Mat. Zh., 2021, 73, 908–929.
- Nazarova L. A. Unimodular representations of the alternating group of degree four. Ukr. Mat. Zh., 1963, 15, 437–444.
- Ringel C. M., Roggenkamp K. W. Diagrammatic methods in the representation theory of orders. J. Algebra, 1979, 60, 11–42.